
Structural Designs Meet Optimality: Exploring Optimized

LSM-tree Structures in A Colossal Configuration Space

JUNFENG LIU
∗
and FAN WANG

∗
, Nanyang Technological University, Singapore

DINGHENG MO, Nanyang Technological University, Singapore
SIQIANG LUO

†
, Nanyang Technological University, Singapore

Mainstream LSM-tree-based key-value stores face challenges in optimizing performance for point lookup,
range lookup, and update operations concurrently due to their constrained configurations. They typically
follow fixed patterns to specify the level capacity and the number of sorted runs per-level. This confines their
designs to a restricted space, limiting opportunities for broader optimizations.

To address this challenge, we consider a more flexible configuration that enables independent adjustments
of the number of runs per-level, size ratio, and Bloom filter settings at each LSM-tree level. By carefully
analyzing the cost of each operation based on the new design space, we unveil two critical insights for
optimizing the tradeoff among the three operations. Firstly, achieving efficient point lookup requires a large
last level. Secondly, there is a specific correlation between the number of runs per level and size ratio that is
advantageous for overall update and range lookup performance.

Based on these insights, we introduce Moose, a structure delivering an impressive overall performance
for point lookup, range lookup, and update concurrently. Furthermore, we also introduce a new framework,
Smoose, to navigate the design space for adapting specific workloads. We implemented Moose and Smoose on
top of RocksDB and experimental results demonstrate that our proposed approach outperforms state-of-the-art
LSM-tree structures across diverse workloads.

CCS Concepts: • Information systems→ Record and block layout; Data structures; Data layout.

Additional Key Words and Phrases: LSM-tree, data structure, optimization

ACM Reference Format:

Junfeng Liu, Fan Wang, Dingheng Mo, and Siqiang Luo. 2024. Structural Designs Meet Optimality: Exploring
Optimized LSM-tree Structures in A Colossal Configuration Space. Proc. ACM Manag. Data 2, 3 (SIGMOD),
Article 175 (June 2024), 26 pages. https://doi.org/10.1145/3654978

1 INTRODUCTION

Log-Structured Merge Trees, abbreviated as LSM-trees, play a pivotal role as the foundational data
structures underpinning widely adopted industrial key-value stores like Google LevelDB [23], Meta
RocksDB [22], Apache Cassandra [32], LinkedIn Voldemort [35], and MongoDB WiredTiger [10].
These LSM-trees drive the advancement of mainstream NoSQL database technology. LSM-trees
support three fundamental operations: point lookup, range lookup, and update (or write). These
operations empower key-value stores to construct a wide array of applications, ranging from
∗Both authors contributed equally to this research.
†Corresponding Author

Authors’ addresses: Junfeng Liu, JUNFENG001@e.ntu.edu.sg; Fan Wang, FAN008@e.ntu.edu.sg, Nanyang Technological
University, Singapore; Dingheng Mo, Nanyang Technological University, Singapore, DINGHENG001@e.ntu.edu.sg; Siqiang
Luo, Nanyang Technological University, Singapore, siqiang.luo@ntu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/6-ART175
https://doi.org/10.1145/3654978

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

https://doi.org/10.1145/3654978
https://doi.org/10.1145/3654978

175:2 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

Table 1. Our proposed Moose expands the configuration space of LSM-tree, offering a desired optimal

three-way tradeoff. The structural flexibility level is marked by symbols:% for fixed,!—

for conditionally

tunable, and! for entirely flexible. In conventional LSM-trees, a fixed size ratio and run number are applied

across all levels. Dostoevsky [15] extends this design space by employing two adjustable run numbers for

the last level and non-last levels, respectively. LSM-Bush [16], to some extent, relaxes constraints on both

size ratio and run number. It adopts a descending size ratio and maintains either a single run or a number

equal to size ratio of runs per level. LSM-tree generalization offers entirely independent configuration options

for the size ratio and number of runs per level. The structures within each configuration space are listed to

assess their optimality for different workloads. Note that “optimal” indicates the optimality within its own

designated configuration space.

Configuration Space Optimality within configuration sapce

Domains
Structural Flexibility

Structures Point lookup Update Range query
Size ratio #Runs per-level Filter BPK per-level

Conventional
LSM-tree % % %

Leveling [23] Optimal Low Optimal

Tiering [32] Low Optimal Low

Dostoevsky [15] % ! ! Lazy Leveling [15] Moderate High Low

LSM-Bush [16] !— !— ! QLSM-Bush [16] Moderate Optimal Low

LSM-tree

Generalization*
! ! ! Moose* Conditional Optimal Optimal Tradeoff

social graph processing [4] and time-series data systems [31, 46] to cryptocurrencies [45], online
services [19] and spatial databases [39]. A point lookup outputs a value corresponding to the
queried key; a range lookup scans a key range and outputs the values mapped to the keys located
in the range; an update in an LSM-tree admits a new key-value entry into the data structure, with
a special bit marking whether the write represents an insert or a delete.
Recent LSM-tree development centers on optimizing the costs of its three core operations.

Initially designed, the LSM-tree organizes data as key-value pairs across multiple exponentially
increasing levels, each level representing a consolidated sorted run with keys sorted from small
to large. A level is sort-merged to the subsequent level when reaching its capacity. At a high
level, the LSM-tree employs an out-of-place update mechanism for efficient batched updates, while
can impact read performance. Therefore, recent key-value stores like RocksDB and LevelDB use
Bloom filters in each sorted run to significantly improve read performance by reducing disk I/Os
for point lookups. Moreover, the point lookup performance has been further optimized by an
influential work Monkey [14], which strategically utilizes the filter memory budgets across levels
and effectively improves point lookup performance. Doestoevsky [15], built on Monkey, explores a
tradeoff between tiering compaction (write-optimized) and leveling compaction (read-optimized),
suggesting performance tuning based on workload. Later, LSM-Bush [16] introduces a more flexible
structure by partly relaxing capacity ratios between adjacent levels which obviously enhances
write performance.

While these works offer fundamental improvements and inspirations, we witness two open
problems.
Problem 1: To what extent can we optimize point lookups, range lookups and updates

simultaneously? Recent studies have pointed out that the intrinsic tradeoff exists among different
LSM-tree operations, such as point lookups, range lookups, and updates, suggesting that one cannot
expect the co-existence of optimum costs for all these operations. For example, Dostoevsky shows
that tuning compaction policies effectively achieves different balance between read costs and write
costs. However, there lacks theoretical understanding in balancing among different operations
especially when considering the three fundamental operations (point lookups, range lookups and

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:3

updates) together. In particular, given a colossal configuration space for LSM-trees, can we quickly
determine which configuration yields a data structure that makes an optimal tradeoff between two
operations, while the third operation is conditionally optimal given the cost of the previous two?
Answering this question is challenging because when optimizing towards one operation, it can
negatively impact the balance between the other two, resulting in intricate cost analysis.
Problem 2: Can we explore a more flexible configuration space in LSM-tree designs?

Previous studies model the I/O complexity based on a configuration space that consists of size
ratios between two adjacent levels, numbers of runs per-level, as well as bits-per-key settings in
Bloom filters. However, these studies have typically worked with constrained configuration spaces.
Examples of these constraints include maintaining a fixed size ratio (e.g., Dostoevsky requires a
fixed size ratio between adjacent levels), enforcing a specific number of sorted runs (e.g., Leveling
compaction policy suggests only one sorted run in each level), or adhering to a predefined pattern
of size ratios (e.g., LSM-Bush considers doubling exponential size ratios as levels grow larger). This
gives rise to a natural question – can we derive a better data structure when we remove these
constraints and open up more configuration flexibility? To seek out superior configurations within
an expanded space, one naive approach is to exhaustively explore all possibilities within this space,
but apparently this leads to a prohibitive search complexity due to the sheer number of possible
settings. To effectively explore all possible LSM-tree designs, therefore, a new analytical framework
is required to intricately formulate the I/O cost of each operation in the new configuration space,
so as to discover a small subset of the promising settings for further verification.
Our insight: There is a sweet spot amongst the three operational costs with an expanded

configuration space. Unlike previous studies, we consider a configuration space that consists of
all possible level-wise settings including size ratio, number of runs, and Bloom filter bits (subject
to a total memory budget). Importantly, we allow for distinct configurations to be assigned to
individual levels within this framework. To effectively explore the vast configuration space, we
model the I/O costs of point lookups, range lookups, and updates in the expanded space, from
which we discover a set of promising designs. Our crucial observation is that the optimal point
lookup performance hinges primarily on the largest level, whereas the optimal tradeoff between
range lookups and updates depends largely on size ratios across all levels. Given this observation,
we find that a sweet spot to balance the three operational costs may happen when the size ratio
and the number of runs per level vary across the levels, which justifies the necessities of examining
the LSM-tree design over an expanded space.
Moose and Smoose. Based on these insights, we present a new LSM-structure called Moose based
on the theoretical analysis mentioned earlier. Moose achieves an asymptotically optimal point
lookup cost when the largest level capacity is given and the cost tradeoff between range lookups and
updates follows an optimal tradeoff curve. This is a non-trivial instance-optimality result that bridges
the three fundamental LSM-tree operational costs, which has rarely been systematically studied
before. Table 1 compares our proposal against existing studies. The left side of the table shows that
our LSM-tree generalization entails a configuration space that gives the largest flexibility while the
right side of the table illustrates the cost optimality of each structure within their own configuration

space. Clearly, Moose considers the highest structural flexibility, and is the only method that offers
optimality interpretations covering three operations. To further pinpoint the best setting of the
largest level, we design Smoose, a workload-aware version of Moose, to autonomously determine
the capacity of the largest level with respect to a given workload consisting of point lookups, range
lookups, and updates.
Contributions. We summarize our contribution as follows:
• All-flexible configurations.We are the first to consider an LSM-tree design space that simulta-
neously allows varying Bloom filter bits-per-keys, the numbers of runs, and size ratios across

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:4 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

each level of the LSM-tree. We establish a new set of cost analysis based on the largely expanded
configuration space.

• New LSM-structures with optimality guarantees.We present Moose, a new LSM-tree design
that is selected by optimizing the costs over the vast configuration space. Given the capacity of
the largest level, it secures an asymptotic optimal point lookup cost, conditioned on an optimal
tradeoff between range lookup cost and update cost along a specific Pareto curve. Moreover, we
further present Smoose, built upon on Moose, to pinpoint the hyperparameters in response to
diverse workloads.

• Extensive experiments over RocksDB.We embed our design into RocksDB, a widely adopted
industrial KV-store, and evaluate its performance against state-of-the-art designs. Experimental
results show that Moose and Smoose are often the best-rank methods among the seven methods
we study, over a wide spectrum of workloads.

2 BACKGROUND

LSM-tree. The LSM-tree comprises a main memory buffer, typically denoted as level-0, and
subsequent levels that are located on disks. The capacity of these levels is controlled by size ratio,
often set to a fixed integer 𝑇 , which represents the capacity ratio between two consecutive levels.
Data insertions are initially buffered in Level-0 until the level capacity is reached thus prompting
a flush which sort-merges the data to the next level. During the merge, only the most recent
version is retained for entries with the same keys and the obsolete versions are discarded. This
cyclical process, occurring between any two levels, expands the number of levels as more data
is inserted. With a memory buffer (i.e. Level-0) size of 𝐹 , the capacity of Level-𝑖 is 𝐹 ·𝑇 𝑖 , and the
last level can hold approximately 𝑁 · 𝑇−1

𝑇
entries, where 𝑁 represents the total number of entries.

Therefore, the number of levels can be derived with a given entry number 𝑁 and size ratio 𝑇 as
𝐿 = ⌈log𝑇 (𝑁𝐹 · 𝑇−1

𝑇
)⌉. Please note that the size ratio between consecutive levels should be in the

range [2, 𝑁 /𝐹] to ensure the multi-level structure of the LSM-tree and maintain increasing capacity.
Merge Policies and Sorted Runs. Merge policy refers to the operations executed when a certain
Level-𝑖 is full and is required to be merged to the next level. Typical merge policies include leveling
and tiering. In leveling policy, each LSM-tree level only contains one sorted run, and filling-up a
level triggers a sort-merge of the level to the run at the next level. In tiering policy, in contrast,
each LSM-tree level may have at most 𝑇 sorted runs, and the full Level-𝑖 triggers a merge amongst
the runs at this level and a new sorted run will be placed into the next level.
Point Lookups. Point lookup involves finding the value of a given key in an LSM-tree. If the key
is in the memory buffer, the associated value is returned from the buffer; otherwise, the procedure
searches sorted runs on disk from small to large LSM-tree levels and returns the first encountered
value for the queried key. If multiple runs exist within one level, all the runs should be searched
and only the latest entry is returned.

To accelerate the point lookups, Bloom filters are commonly employed for efficient enhancement.
These probabilistic structures determine the key existence in a set and are typically cached in
memory during system startup. The accuracy of Bloom filter is governed by a tunable parameter,
bits-per-key (BPK), representing the ratio of the filter memory budget to the number of keys. BPK
can impact the False Positive Rate (FPR) of a Bloom filter, given by 𝐹𝑃𝑅 = 𝑒−𝐵𝑃𝐾 ·𝑙𝑛 (2)2 .

When the LSM-tree conduct point lookup on a sorted run, it will first access the Bloom filter to
predict the existence of the query key. Actual I/O operations are performed only if the Bloom filter
indicates a positive result. The cost of point lookup is directly related to the FPR of each sorted run
when the key is absent. Typically, the memory allocated to each entry is fixed for every level (i.e.,
BPK is a constant for all the levels) in the systems.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:5

Fig. 1. An instance of LSM-tree generalization. The LSM-tree generalization enables independent configuration

of the size ratio and the number of runs per level, thus providing a significantly higher degree of flexibility in

structure design. In this figure, 𝑅𝑀 stands for run magnification, and Cap. is the abbreviation for capacity.

Range Lookups. During a range lookup, the LSM-tree retrieves the most recent versions of all
entries within a specified key range. It starts from the target key at each level/sorted run and then
sort-merges the retrieved entries from different level/sorted runs. If there are the same keys at
different levels/sorted runs, the LSM-tree will discard the older versions.
Updates. The LSM-tree inserts new key-value pairs to its memory buffer and flushes it to the disk
as a sorted run when the buffer threshold is reached. Moreover, LSM-tree adopts an out-of-place
strategy to update the existing keys, which follow the same process of insertion.

3 MOOSE: THREE-WAY BALANCED LSM-TREE STRUCTURE

This section presents the detailed design of Moose (Sections 3.1 ∼ 3.5), and its workload-aware
counterpart Smoose (Section 3.6).

3.1 LSM-tree Generalization and Analysis

In order to develop a structure that effectively balances all three operations of point lookup, range
lookup, and update, we introduce a more flexible LSM structure model, LSM-tree generalization, to
significantly expand the configuration space of LSM-tree. Based on the proposed structure model,
we carefully break down the cost associated with each operation and evaluate the corresponding
complexity with the disk access model that formulates operational costs with the associated I/O
times. Our analysis varies from existing works for the employment of an extended configuration
space which ultimately drives a new data structure design, named Moose.
General Configuration Space Drives New Designs.Most existing works employ a global size
ratio or a restricted compaction policy to determine the capacity of each level and its associated
sorted runs. Apparently, this strategy poses latent constraints on the profile of the LSM-tree thus
resulting in a limited design space.
To tackle this problem, we propose LSM-tree generalization that relaxes the restriction on size

ratio and compaction policy thus significantly enhancing the structural flexibility of LSM-tree.
Specifically, LSM-tree generalization introduces two level-independent parameters, run number
{𝑛𝑖 } and run magnification {𝑠𝑖 } to facilitate the refined structural adjustment, where 𝑛𝑖 is the
maximum number of sorted runs at Level-𝑖 , and 𝑠𝑖 is the ratio between the run size of Level-𝑖 and
the capacity of Level-(𝑖 − 1). Let 𝑁𝑖 be the capacity of level 𝑖 , then:

𝑁𝑖 = 𝑠𝑖 · 𝑁𝑖−1 · 𝑛𝑖 (1)

It immediately implies that the size ratio 𝑟𝑖 =
𝑁𝑖

𝑁𝑖−1
= 𝑠𝑖 · 𝑛𝑖 , suggesting that the setting of

𝑟𝑖 for different level-𝑖 can be diverse, which leads to various size ratios across different levels.
The run magnification 𝑠𝑖 allows for level-wise tuning between leveling and tiering merge policy,
hence controlling the merge policy in finer granularity. We present an instance of the LSM-tree

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:6 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

generalization structure in Figure 1 for which {𝑛𝑖 } and {𝑠𝑖 } are specified as {4, 3, 2}, and {1, 2, 1.5},
respectively, to illustrate the generality of our configuration space.

Our structure design principle is mostly inspired by a new set of theoretical analysis we establish
based on the extended configuration space. Importantly, the new analysis gives us a better opportu-
nity to co-optimize all three operations (range lookup, update, and point lookup). For example, our
analysis shows that the number of runs (𝑛𝑖) at each level should be proportional to the square root
of the size ratio of that level. Under such conditions, point lookup cost becomes asymptotically
optimal as long as the Bloom filter memory budget is wisely allocated across levels.
3.2 Analyzing Each Operation

Based on the extended design space of LSM-tree generalization, we deliver a careful analysis on
the cost of update, range lookup, and point lookup operation.
Analyzing update cost. The I/O cost of update operation is introduced by the subsequent com-
paction process in which the updated entry participates. According to the design principle of
LSM-tree, a compaction is triggered when any level reaches its capacity. If level-𝑖 is full, all the 𝑁𝑖
entries will be read to memory and merged into a larger sorted run to be placed at the next level.
Hence, during the compaction process, every entry in the level would be rewritten. Additionally,
entries are stored in data blocks, which means one I/O operation will read/write an entire data
block. Assume each data block accommodates 𝐵 entries, where 𝐵 is the block size, rewriting 𝑁𝑖

entries consumes 𝑁𝑖

𝐵
I/Os in total. This implies that each compaction introduces 1

𝐵
I/Os for every

participant entry.
In the worst case that an entry is ultimately stored at the largest level, it must traverse the entire

tree after insertion. For tiering, each entry participates in only one compaction at each level thus
taking 𝐿 compactions to reach the last level. This results in 𝑂 (𝐿

𝐵
) I/Os for an update operation.

When it comes to leveling, for which each level contains a single sorted run, all existing data at the
target run would be read and rewritten for reorganization once a new run comes. When the level
achieves its maximum capacity, each entry takes part in an average of 𝑇2 compactions resulting in
the the update cost of 𝑂 (𝑇 ·𝐿

𝐵
).

As shown by Figure 1, the run magnification 𝑠𝑖 is not necessarily an integer for our proposed
LSM-tree generalization. To facilitate this new design, we adopt a different compaction policy
beyond these two methods. When a compaction targets an empty level, a new run is created at the
target level and identified as active. Entries coming from the previous level will be merged into this
active run until it reaches its capacity. If the active run is full, another active run will be established
and the previous one will be marked as static. Consequently, given 𝑁𝑖 is 𝑟𝑖 times greater than the
capacity of level-(𝑖 − 1), it takes 𝑠𝑖 = 𝑁𝑖/𝑛𝑖

𝑁𝑖−1
compactions, on average, to fill up a run. As a result, the

I/O cost of each update operation𝑈 is determined by the number of compactions enabling each
entry to traverse 𝐿 levels, which is represented by the Equation 2.

𝑈 = 𝑂

(
𝐿∑︁
𝑖=1

(
1
𝐵
· 𝑁𝑖

𝑁𝑖−1
· 1
𝑛𝑖

))
(2)

Analyzing range lookup cost. The range lookup retrieves all entries whose key falls within the
target range from the database. In the worst case, entries matching the key range specifications are
scattered across all runs in the entire LSM-tree.
To retrieve them all, the range lookup can be divided into two phases: scanning phase and

retrieving phase. The scanning phase begins with locating the starting point and retrieving the
associated data block at each sorted run. Therefore, the I/O cost in this phase equals the total
number of runs. For tiering and leveling, the scanning phase requires 𝑂 (𝑇 · 𝐿) and 𝑂 (𝐿) I/Os,
respectively. For LSM-tree generalization, the I/O cost in this phase is, accordingly, 𝑂 (∑𝐿

𝑖=1 𝑛𝑖).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:7

Table 2. List of terms used in the paper.

Term Definition

𝑁 total data size quantified by the number of entries
𝐿 total level number
𝑀 Bloom filter memory (in bits)
𝐹 buffer size quantified by the number of entries
𝐵 block size quantified by the number of entries
𝑁𝑖 capacity of level-𝑖 quantified by the number of entries
𝑟𝑖 size ratio between level-𝑖 and level-(𝑖-1)
𝑛𝑖 number of runs at level-𝑖
𝑠𝑖 run magnification of level-𝑖
𝑀𝑖 Bloom filter memory assigned to level-𝑖
𝑝𝑖 false positive rate of level-𝑖

𝑈 , 𝑅, 𝑍 I/O cost of update, range lookup, point lookup

Subsequently, in the retrieving phase, the LSM-tree retrieves and sort-merges the entries from each
runs iterating from the starting point to the end of the specified key range. Assuming that each run
holds several data blocks to read, then the total number of entries to fetch equals 𝑡 = 𝑂 (∑𝐿

𝑖=1 𝑛𝑖 · 𝐵).
(We will discuss in Section 3.5 why our approach still works even when this assumption is removed).
Since the entries are fetched sequentially in the retrieving phase, 𝑡

𝐵
additional I/Os are introduced

in this phase. As a result, the I/O cost of range query operation is the combination of scanning cost
and retrieving cost, as Equation 3 shows.

𝑅 = 𝑂

(
𝐿∑︁
𝑖=1

𝑛𝑖 +
∑𝐿
𝑖=1 𝑛𝑖 · 𝐵
𝐵

)
= 𝑂

(
𝐿∑︁
𝑖=1

𝑛𝑖

)
(3)

Analyzing point lookup cost. Point lookup operation retrieves the up-to-date entry possessing
the target key from the LSM-tree. For instance, if an entry is flushed to Level-1 while another entry
with the same key has already been stored at Level-2, two qualified entries exist simultaneously.
Nevertheless, the one located at the larger level carries outdated information thus is obsolete. In
order to retrieve the most recent record, the Level-0 memory buffer is initially examined to identify
if the desired entry exists. If the target entry is found, retrieve it and end the operation, which
requires one I/O operation. Otherwise, scan the LSM-tree level by level from the small to large
level until the target is identified or all levels are traversed. If multiple runs exist within one level,
all the runs should be searched and only the latest entry is returned if the entry exists.
Additionally, Bloom filters are designed for each run to boost the point lookup process. If the

qualified entry does not exist in a run, its Bloom filter provides an accurate negative result. Then,
we can safely skip searching in that run, thus saving one I/O operation. Whereas, Bloom filter may
produce false positives, which means that we still need to access the run even if the target entry
is not present. Hence, the probability of falsely retrieving a run at Level-𝑖 equals the Bloom filter
false positive rate 𝑝𝑖 . In the worst case, as indicated in the recent works [14, 15], the desired key is
absent throughout the entire tree and all levels should be traversed. Therefore, the I/O cost of a
point lookup operation is the sum of false positive rates at all runs as Equation 4 presents.

𝑍 = 𝑂

(
𝐿∑︁
𝑖=1

𝑛𝑖 · 𝑝𝑖

)
(4)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:8 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

We denote the total Bloom filter memory budget as𝑀 , with𝑀𝑖 budget assigned to the 𝑖-th level.
Given the Bloom filter bits per key for that level is 𝑀𝑖

𝑁𝑖
, we can derive the corresponding false

positive rate with Equation 5 based on the Bloom filter’s property.

𝑝𝑖 = 𝑒
−𝑀𝑖

𝑁𝑖
·ln(2)2

(5)

3.3 New Inspirations on the Three-way Tradeoff

Our proposed LSM-tree generalization model presents higher structural flexibility thus enabling us
to develop a generic structure striking superior three-way tradeoff among the cost of range lookup,
update, and point lookup operations. To this end, we investigate the properties of the three costs
quantitatively and propose Moose, a structure that realizes an optimal tradeoff between range
lookup and update, while achieving a conditioned asymptotic optimal point lookup cost.
The Pareto curve of range lookup and update. It is observed that there exists an intrinsic
connection between the range lookup cost and update cost. Therefore, we start by examining a
Pareto curve1 of the two costs (denoted as RU-curve in the following) indicating the condition that
range lookup/update cost cannot be further improved without harming another as is described by
Equation 6.

𝐻 = 𝑅 ·𝑈 = 𝑂

(
𝐿∑︁
𝑖=1

(
1
𝐵
· 𝑁𝑖

𝑁𝑖−1
· 1
𝑛𝑖

)
·
𝐿∑︁
𝑖=1

𝑛𝑖

)
(6)

Lemma 3.1 (Cauchy-Schwarz Ineqality). For any two sets of positive numbers, {𝑥𝑖 |1 ≤ 𝑖 ≤ 𝑡}
and {𝑦𝑖 |1 ≤ 𝑖 ≤ 𝑡}, we have ∑︁

1≤𝑖≤𝑡
𝑥𝑖

∑︁
1≤𝑖≤𝑡

𝑦𝑖 ≥
(∑︁

1≤𝑖≤𝑡

√
𝑥𝑖𝑦𝑖

)2

,

where the equality holds when
𝑥𝑖
𝑦𝑖

=
𝑥 𝑗

𝑦 𝑗
for any 1 ≤ 𝑖, 𝑗 ≤ 𝑡 .

By applying the Cauchy-Schwarz inequality, the impact of 𝑛𝑖 can be removed from the expression
of 𝐻 . Then we achieve a more explicit expression of the RU-curve as specified by the Equation 7.
This equation indicates that the optimal RU-curve is obtained when 𝑛𝑖 = 𝑘

√︃
𝑁𝑖

𝑁𝑖−1
(derived by using

the condition that Cauchy-Schwarz equality holds) if the capacity of each level 𝑁𝑖 is determined.
The parameter 𝑘 is a knob allowing us to tune along the RU-curve.

𝐻 ≥ 𝑂
©­« 1
𝐵

(
𝐿∑︁
𝑖=1

√︂
𝑁𝑖 · 𝑛𝑖
𝑁𝑖−1 · 𝑛𝑖

)2ª®¬ = 𝑂
©­« 1
𝐵

(
𝐿∑︁
𝑖=1

√︂
𝑁𝑖

𝑁𝑖−1

)2ª®¬ (7)

Currently we are capable of finding an RU-curve presenting the optimal tradeoff between range
lookup and update cost for a set of {𝑁𝑖 }. Meanwhile, there are multiple valid level capacity allocation
strategies for a given data size 𝑁 , each of which would introduce a specific RU-curve. Therefore,
selecting the optimal RU-curve and the corresponding level capacity distribution {𝑁𝑖 } is another
vital problem.

Acute readers may observe that the RU curve obtained through Equation 7 could be further
optimized with the Arithmetic Mean-Geometric Mean (AM-GM) Inequality:

1Beyond which lookup cost cannot be improved without harming update cost, and vise versa.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:9

𝐻 ≥ 𝑂
©­­«

1
𝐵
· ©­«𝐿 ·

(
𝐿∏
𝑖=1

√︂
𝑁𝑖

𝑁𝑖−1

) 1
𝐿 ª®¬

2ª®®¬ = 𝑂

(
1
𝐵
· 𝐿2 ·

(
𝑁𝐿

𝑁0

) 1
𝐿

)
(8)

The equality is held when
√︁
𝑁𝑖/𝑁𝑖−1 =

√︁
𝑁 𝑗/𝑁 𝑗−1 for any 𝑖 and 𝑗 . It implies that the size ratio

for each level should be identical throughout the tree for balancing the cost of range lookup and
update. However, strictly adhering to this configuration of globally fixed capacity ratio may lead to
a sub-optimal point lookup performance, which we will discuss at Section 3.4.
Co-optimizing with point lookups. Based on our previous analysis, the I/O cost of a point
lookup operation is calculated by summing the product of the run number 𝑛𝑖 and the respective
Bloom filter false positive rate 𝑝𝑖 across all levels. Therefore, there are two factors affecting the
point lookup efficiency. Similar to range lookup operation, the point lookup cost is positively related
to the number of runs. Consequently, the point lookup performance can be co-tuned with that of
range lookup by adjusting run number regulator 𝑘 along the RU-curve. Whereas, the impact of
false positive rate is more complex due to its dependence on the Bloom filter memory assignment
strategy. Existing studies [14, 16] have demonstrated that assigning identical bits per key for each
entry is suboptimal for point lookup improvement. Therefore, we aim to propose an optimal Bloom
filter memory assignment strategy for our proposed LSM-tree generalization to expedite point
lookup operation. Finally, our analysis indicates that, considering both the run number 𝑛𝑖 and false
positive rate 𝑝𝑖 , expanding the capacity of the last level 𝑁𝐿 is advantageous for co-optimizing point
lookups conditioned on optimized update and range lookup performance.

To achieve the most effective Bloom filter memory assignment, we reevaluate the point lookup
cost. Assuming the 𝑖th level takes up 𝑀𝑖 of Bloom filter memory, the false positive rate can be
expressed as 𝑒𝑥𝑝 (−𝑀𝑖

𝑁𝑖
· ln(2)2), where 𝑀𝑖

𝑁𝑖
represents the Bloom filter bits per key. Subsequently,

we decompose the point lookup cost at a granular level, with each entry contributing 𝑛𝑖 ·𝑝𝑖
𝑁𝑖

to the
entire cost. Consequently, we can optimize the I/O cost of the point lookup operation according to
Equation 9 without introducing any additional assumption on the capacity ratio.

𝑍 = 𝑂

(
𝐿∑︁
𝑖=1

𝑁𝑖 ·
𝑛𝑖 · 𝑝𝑖
𝑁𝑖

)

(By AM-GM inequality) ≥ 𝑂
©­­«𝑁 ·

(
𝐿∏
𝑖=1

(
𝑛𝑖

𝑁𝑖
· 𝑝𝑖

)𝑁𝑖

) 1
𝑁 ª®®¬

(By Eq. 5) = 𝑂
©­­«𝑁 ·

(
𝐿∏
𝑖=1

(
𝑛𝑖

𝑁𝑖

)𝑁𝑖

· 𝑒−
∑𝐿

𝑖=1 𝑀𝑖 ·ln(2)2
) 1
𝑁 ª®®¬

= 𝑂
©­­«𝑁 ·

(
𝐿∏
𝑖=1

(
𝑛𝑖

𝑁𝑖

)𝑁𝑖

) 1
𝑁

· 𝑒−
𝑀
𝑁
·ln(2)2ª®®¬ (9)

The inequality is due to AM-GM inequality, and the equality holds when the Equation 10 is satisfied
for arbitrary two levels. This implies that to achieve the optimal Bloom filter memory allocation
strategy, the false positive rate 𝑝𝑖 for a specific level should be proportional to its run size 𝑁𝑖

𝑛𝑖
. In

other words, it is advisable to allocate more bits per key to the smaller levels. This strategy is
reasonable because improving the point lookup performance of the smaller levels consumes lower
memory budget compared to the larger ones. For example, assuming level-(𝑖 + 1) is five times larger

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:10 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

than level-𝑖 . Then, it takes the same amount of memory to increase the bits per key from 0 to 5 for
level-𝑖 while only to increase it from 0 to 1 for level-(𝑖 + 1). Consequently, the false positive rate of
level-(𝑖 + 1) is roughly 6.8 times higher than that of level-𝑖 . Additionally, larger levels are more
likely to be accessed by point lookup operation since they store larger portion of data. Therefore,
they are inherently less sensitive to the false positive rate increment due to the higher true positive
rate. As a result, allocating more memory to the smaller levels helps achieve a more favorable
tradeoff that ultimately enhances overall point lookup performance.

𝑛𝑖 · 𝑝𝑖
𝑁𝑖

=
𝑛 𝑗 · 𝑝 𝑗
𝑁 𝑗

(10)

This insight is consistent with the existing study Monkey [14]. Specifically, Monkey is a special-
ized case of our method with a fixed size ratio and number of runs across all levels. In comparison
to this approach, our Bloom filter memory allocation strategy is more inclusive and thus applicable
to more flexible LSM-tree structures. This, in turn, empowers us to achieve a superior three-way
tradeoff when combined with the design space provided by the LSM-tree generalization.

To achieve this, we incorporate the insights gained through RU-curve optimization into the point
lookup cost analysis for further enhancement. As Equation 11 depicts, the I/O cost of point lookup
operation 𝑍 is currently formulated solely in terms of the level capacity {𝑁𝑖 } after introducing the
condition 𝑛𝑖 = 𝑘

√︃
𝑁𝑖

𝑁𝑖−1
. Accordingly, we can adjust the profile of the LSM-tree by adjusting {𝑁𝑖 } to

enhance point lookup performance while retaining its superiority on the range lookup and updates.

𝑍 =
©­­«𝑁 ·

(
𝐿∏
𝑖=1

(
𝑛𝑖

𝑁𝑖

)𝑁𝑖

) 1
𝑁

· 𝑒−
𝑀
𝑁
·ln(2)2ª®®¬

= 𝑂
©­­«𝑁 · 𝑘 ·

(
𝐿∏
𝑖=1

(
1

√
𝑁𝑖 · 𝑁𝑖−1

)𝑁𝑖

) 1
𝑁

· 𝑒−
𝑀
𝑁
·ln(2)2ª®®¬ (11)

LetH(𝑁1 · · ·𝑁𝐿) = 𝑘 ·𝑁 ·(∏𝐿
𝑖=1 (1√

𝑁𝑖 ·𝑁𝑖−1
)𝑁𝑖) 1

𝑁 ·𝑒−𝑀
𝑁
·ln(2)2 andU(𝑁1 · · ·𝑁𝐿) =

∑𝐿
𝑖=1 𝑁𝑖 log(𝑁𝑖𝑁𝑖−1).

It is obvious that H(𝑁1 · · ·𝑁𝐿) is positively correlated to 2−U(𝑁1 · · ·𝑁𝐿) , and hence inversely cor-
related to U(𝑁1 · · ·𝑁𝐿). Consequently, we should find the maximum value of U(𝑁1 · · ·𝑁𝐿) to
minimize the point lookup cost. Moreover,

𝐿∑︁
𝑖=1

𝑁𝑖 log𝑁𝑖 ≤ 𝑢 (𝑁1 · · ·𝑁𝐿) ≤
𝐿∑︁
𝑖=1

𝑁𝑖 log(𝑁𝑖𝑁𝑖) = 2
𝐿∑︁
𝑖=1

𝑁𝑖 log𝑁𝑖

This equation demonstrates that maximizing U(𝑁1 · · ·𝑁𝐿) is closely related to maximizing∑𝐿
𝑖=1 𝑁𝑖 log𝑁𝑖 . Considering the convex property of function 𝑓 (𝑥) = 𝑥 log𝑥 and the capacity con-

straint
∑𝐿
𝑖=1 𝑁𝑖 = 𝑁 , an increased𝑁𝐿 yields advantages for optimizing the point lookup performance.

3.4 DP Aided Three-way Tradeoff

For obtaining an ideal LSM-tree structure that delivers optimal overall performance on range
lookup, update, and point lookup simultaneously, we revisit the insights derived from RU-curve and
point lookup optimization. To minimize the point lookup cost, a large capacity should be assigned
to the last level. Meanwhile, a fixed size ratio is advantageous for reaching the optimal RU-curve
that is negatively related to the sum of the size ratio for each level. In this scenario, an enlarged last
level capacity would inevitably increase the size ratio between the last two levels, thus affecting
the RU-curve optimality. Therefore, we have to make a compromise when applying these insights
on LSM-tree structure design for achieving the optimal overall performance.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:11

. . .

. . .

. . .

. . .

Fig. 2. Dynamic programming is able to produce RU-curve optimal structure for a given entry number 𝑁 ,

buffer size 𝐹 , and last level capacity 𝑁𝐿 by decomposing the original problem into various sub-problems

recursively.

To this end, we employ a specialized last level capacity 𝑁𝐿 for improving the point lookup
efficiency. Based on this determined 𝑁𝐿 , we subsequently identify an optimal capacity configu-
ration for the non-last levels to enhance the overall performance of update and range lookup
via approaching the conditioned optimal RU-curve. According to Equation 7, the optimality of
RU-curve hinges directly on the sum of the square roots of each level size ratio, denoted to 𝐴 that
equals

∑𝐿
𝑖=1

√︃
𝑁𝑖

𝑁𝑖−1
.Therefore, we can examine the level capacity configuration {𝑁1, 𝑁2, · · · , 𝑁𝐿−1}

for given 𝑁 and 𝑁𝐿 by minimizing the cost 𝐴 with dynamic programming. Interestingly, we will
show that during this optimization, the impact on the point lookup is well bounded, as we will
analyze in Section 3.5.
Dynamic Programming (DP). To derive optimal configuration {𝑁1, 𝑁2, · · · , 𝑁𝐿−1}, we solve this
problem recursively. To start with, we define the state of this problem as 𝑆 (𝑁𝑑 , 𝑁𝑟), where 𝑁𝑑 is
the initial capacity and 𝑁𝑟 is the remained capacity. Accordingly, the original problem is denoted as
𝑆 (𝐹, 𝑁 − 𝑁𝐿). A sub-problem can be produced by allocating certain amount of remained capacity
to a level and noted as 𝑆 (𝑁𝑑 · 𝑟, 𝑁𝑟 − 𝑁𝑑 · 𝑟), where 𝑟 is the size ratio that incurs

√
𝑟 cost to reach

this sub-problem. Eventually, the cost of the original problem is the minimum value among the
costs of all possible sub-problems plus the cost for reaching that particular state.

As depicted in Figure 2, we can enumerate all potential capacities 𝑁𝑑 for level-1 and determine
the optimal capacity configurations among them. The state 𝑆 (𝐹, 𝑁 − 𝑁𝐿) is essentially determined
by one of these configurations that yields the minimum cost. To further illustrate this process, let
us consider the scenario that 𝑟 · 𝐹 capacity is allocated to level-1. The state of this sub-problem
𝑆 (𝑟 ·𝐹, 𝑁 −𝑁𝐿 −𝑟 ·𝐹) is associated with an optimal configuration {𝑟 ·𝐹, 𝑁 ′

2, · · · , 𝑁 ′
𝐿−1} that achieves

the minimum cost. According to the cost formulation of 𝐴, this particular sub-problem results in a
cost of

√
𝑟 + 𝑆 (𝑟 · 𝐹, 𝑁 − 𝑁𝐿 − 𝑟 · 𝐹), as Equation 12 presents.

𝑆 (𝑁𝑑 , 𝑁𝑟) = min
2≤𝑟≤⌈ 𝑁𝑟

𝑁𝑑
⌉
{𝑆 (𝑟𝑁𝑑 , 𝑁𝑟 − 𝑟𝑁𝑑) +

√
𝑟 } (12)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:12 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

Fig. 3. An illustration for the largest three levels of the default Moose, in which, 𝑆𝑅 and 𝑅𝑀 stands for

size ratio and run magnification, respectively. The size ratio is configured as {9, 6, 5} corresponding to a run

number of {3, 2, 2}.

Moreover, we can exhaustively list all sub-problems related to level-1 by iterating through 𝑟

from 2 to ⌈𝑁 − 𝑁𝐿/𝐹 ⌉. As previously mentioned, 𝑆 (𝐹, 𝑁 − 𝑁𝐿) is the minimum cost among all
sub-problems, as demonstrated in Figure 2. Similarly, we can further decompose each sub-problem
to derive its state by enumerating all potential capacities of level-2. During this process, if 𝑁𝑟 is
less than twice 𝑁𝑑 , it indicates that the remaining capability is insufficient to establish a new level.
In such cases, we practically allocate the remaining 𝑁𝑟 capacity to the previous level and update its
state to

√︁
𝑁𝐿/(𝑁𝑑 + 𝑁𝑟). Following this approach, we can recursively break down the sub-problems

and assemble their results to construct the solution for the original problem.
To improve computational efficiency, we implement memoization for each state to quickly access

them in the subsequent iterations without recalculation. Given that both initial capacity 𝑁𝑑 and
remaining capacity 𝑁𝑟 are integer multiples of the buffer size, there are at most ⌈𝑁 /𝐹 ⌉2 unique
states in the entire process. This significantly reduces the time and computational complexity of
the algorithm. In practice, our dynamic programming algorithm can reach the RU-curve optimal
structure in just a few seconds.
Moose. Building upon the preceding discussion, we propose Moose, a versatile structure striking
superior three-way tradeoff among point lookup, range lookup and update. Moose incorporates
an independent last level capacity 𝑁𝐿 to adjust point lookup performance. Subsequently, based
on the pre-determined 𝑁𝐿 , it identifies a capacity configuration {𝑁1, 𝑁2, · · · , 𝑁𝐿−1} approaching
conditioned optimal RU-curve via dynamic programming algorithm, which boosts the overall
update and range lookup efficiency. Following the insights gained from RU-curve optimization,
Moose maintains 𝑘 · √𝑟𝑖 sorted runs at each level that is controlled by the run number regulator 𝑘
to adjust the range lookup and update performance.

Apparently, the Moose structure can be adjusted by tuning two parameters 𝑁𝐿 and 𝑘 . This allows
it to achieve various tradeoffs among the three operations thus adapting to different workloads. For
instance, when point lookup dominates the workload, it is advisable to use a larger 𝑁𝐿 . If the range
lookup overweights the updates, a smaller 𝑘 is more suitable. Therefore, to determine these two
parameters for specific workloads, a workload aware counterpart Smoose is proposed in Section 3.6.
Given the optimal 𝑁𝐿 is determined by workload-specific information which is inaccessible for
Moose, we select a sound value, 𝑁𝐿 = 0.8𝑁 , as a default setting whose efficacy and robustness is
further validated in Section 4. Moreover, as the Moose instance presented in Figure 3 illustrates,
we set 𝑘 to 1 for the default configuration. Considering the per-level run number may not equal
1 nor the size ratio, we maintain an active run at each level as depicted in Figure 3. During the
compaction process, files coming from the previous level are merged with the active run until it
reaches its maximum capacity. Should this occur, a new active run is created, and the previous one
is designated as static.
With increasing number of unique keys inserted into Moose, a preemptive compaction is

triggered on the last level when its maximum capacity is reached, which expands the size 𝑁𝐿 . Then,

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:13

 /2

……

Fig. 4. An illustration of the structures delivering optimum and worst lookup cost, H∗
and H ′

, respectively.

The point lookup performance of Moose is asymptotically optimal sinceH ′
= 𝑂 (H∗).

we can deduce a new 𝑁 based on their relationship (e.g., 𝑁𝐿 = 0.8𝑁). After that, the introduced
algorithm can be repeated to obtain a new structure for the updated 𝑁 .

3.5 Theoretical Insights

In this section, we show several conclusive optimality results based on the design in Section 3.4.
We give the following lemmas.

Lemma 3.2. Given the last level capacity 𝑁𝐿 , the expected point lookup cost in Moose is asymptoti-

cally optimal conditioned on optimized range lookup and update costs.

Proof. Recall the discussion at the end of Section 3.3. The point lookup costH deteriorates with
the increment ofU based on a given RU-curve. Hence we can evaluate the point lookup cost by
examining the maximum and minimum values of U(𝑁1, . . . , 𝑁𝐿) among various legit 𝑁1, . . . , 𝑁𝐿−1
as indicated in Figure 4.

U(𝑁1, . . . , 𝑁𝐿) =
∑︁
𝑖≤𝐿

𝑁𝑖 log(𝑁𝑖𝑁𝑖−1)

= 𝑁𝐿 log𝑁𝐿 + 𝑁𝐿 log𝑁𝐿−1 +
∑︁
𝑖≤𝐿−1

𝑁𝑖 log(𝑁𝑖𝑁𝑖−1)

≤ 𝑁𝐿 log𝑁𝐿 + 𝑁𝐿 log(𝑁 − 𝑁𝐿) (13)

The last inequality holds because U(·) is maximized when 𝑁𝐿−1 = 𝑁 − 𝑁𝐿 and all other
𝑁𝑖 = 0. Inspired by the AM-GM inequality, since

∑
𝑖≤𝐿 𝑁𝑖 remains constant and 𝑁𝑖 log(𝑁𝑖𝑁𝑖−1)

escalates with increased 𝑁𝑖 · 𝑁𝑖−1, the maximum should be reached when the 𝑁𝑖 · 𝑁𝑖−1 values
presents substantial deviation. To prove this, let us consider all 𝑁𝑖 (𝑖 ≥ 3) are fixed and optimize
U(·) by co-tuning 𝑁1 and 𝑁2, where U(𝑁1, . . . , 𝑁𝐿) = Ψ + 𝑁3 log𝑁2 + 𝑁2 log𝑁2 + 𝑁2 log𝑁1 and
Ψ =

∑𝐿
𝑖=4 𝑁𝑖 log(𝑁𝑖𝑁𝑖−1) + 𝑁3 log𝑁3 is a value independent of 𝑁1 and 𝑁2. Since 𝑁1 + 𝑁2 is a fixed

value now (because all 𝑁𝑖 (𝑖 ≥ 3) are fixed and 𝑁1 + 𝑁2 = 𝑁 − ∑
𝑖≥3 𝑁𝑖), it is easy to verify that

U(·) is maximized when 𝑁1 = 0 and 𝑁2 = 𝑁 − ∑𝐿
𝑖=3 𝑁𝑖 , namely the last two levels are merged.

Repetitively applying the procedures on the last two levels, giving us that 𝑁𝐿−1 = 𝑁 − 𝑁𝐿 is the
setting that maximizesU(·). On the other hand,

U(𝑁1, . . . , 𝑁𝐿) =
∑︁
𝑖≤𝐿

𝑁𝑖 log(𝑁𝑖𝑁𝑖−1) ≥ 𝑁𝐿 log𝑁𝐿 + 𝑁𝐿 log𝑁𝐿−1

≥ 𝑁𝐿 log𝑁𝐿 + 𝑁𝐿 log
𝑁 − 𝑁𝐿

2
(14)

The last inequality holds as each level multiplies capacity of the preceding one, thus𝑁𝐿−1 ≥ ∑𝐿−2
𝑖=1 𝑁𝑖

and 𝑁𝐿−1 +
∑𝐿−2
𝑖=1 𝑁𝑖 = 𝑁 − 𝑁𝐿 . Assume the point lookup cost (H ′ (·)) in our structure is due to

setting 𝑁 ′
1, 𝑁

′
2, . . . , 𝑁

′
𝐿−1, 𝑁𝐿 , and the optimum cost (H ∗ (·)) is by setting 𝑁 ∗

1 , 𝑁
∗
2 , . . . , 𝑁

∗
𝐿−1, 𝑁𝐿 . Note

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:14 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

… … …

Fig. 5. The expected set falls within Moose’s searching space since it explores all possible values of each size

ratio.

that H(𝑁1, . . . , 𝑁𝐿) = Υ · (2−0.5U(𝑁1,...,𝑁𝐿)) 1
𝑁 , where Υ = 𝑁 · 𝑘 · 𝑒−𝑀

𝑁
(ln 2)2 . Our performance is

asymptotically optimal as shown

H ′ (𝑁 ′
1, . . . , 𝑁

′
𝐿−1, 𝑁𝐿) = Υ · (2−0.5U(𝑁1,...,𝑁𝐿)) 1

𝑁

(By Eq. 14) ≤ Υ · (𝑁𝑁𝐿

𝐿
(𝑁 − 𝑁𝐿

2
)𝑁𝐿) −0.5

𝑁

= Υ · (𝑁𝑁𝐿

𝐿
(𝑁 − 𝑁𝐿)𝑁𝐿) −0.5

𝑁 · 2
0.5𝑁𝐿
𝑁

(By Eq. 13) ≤ H ∗ (𝑁 ∗
1 , . . . , 𝑁

∗
𝐿−1, 𝑁𝐿) · 2

0.5𝑁𝐿
𝑁

= 𝑂 (H ∗ (𝑁 ∗
1 , . . . , 𝑁

∗
𝐿−1, 𝑁𝐿))

□

Lemma 3.3. Given the last level capacity 𝑁𝐿 , the expected product of range lookup cost and update

cost in Moose is asymptotically optimal.

Proof Sketch. Let 𝑅𝑈 (𝑟1, 𝑟2 . . . , 𝑟𝐿) denote the expected product of range lookup and update
cost of a given size ratio set 𝑟1, 𝑟2 . . . , 𝑟𝐿 . Let {𝑟 ∗1 , 𝑟 ∗2 . . . , 𝑟 ∗𝐿∗} denote the size ratios determined by
Moose.

Given𝑅𝑈 (𝑟1, 𝑟2 . . . , 𝑟𝐿) is the optimal value, the associated value of Moose satisfies𝑅𝑈 (𝑟1, 𝑟2 . . . , 𝑟𝐿) ≤
𝑅𝑈 (𝑟 ∗1 , 𝑟 ∗2 . . . , 𝑟 ∗𝐿∗). We would like to prove the equality holds because the expected set lies within
Moose’s searching space. To start, there must be 𝑟1 = 𝑟 ∗1 as Moose scrutinizes every feasible value
of 𝑟1. Otherwise, the stipulated condition in Equation 12 would be contravened presenting

𝑆 (𝑟∗1𝐹, 𝑁 − 𝑟∗1𝐹) +
√︃
𝑟∗1 > 𝑆 (𝑟1𝐹, 𝑁 − 𝑟1𝐹) +

√
𝑟1

Subsequently, we demonstrate that 𝑟𝑖 = 𝑟 ∗𝑖 for any 𝑖 < 𝐿∗. To this end, let us assume that ∀𝑖 ≤ 𝑘 ,
𝑟𝑖 = 𝑟 ∗𝑖 holds. Let 𝑁𝑑 = 𝐹 · ∏𝑘

𝑖=1 𝑟𝑖 and 𝑁𝑟 = 𝑁 − 𝐹 · ∑𝑘
𝑖=1

∏𝑖
𝑗=1 𝑟 𝑗 . Similarly, 𝑟𝑘+1 = 𝑟 ∗

𝑘+1 must be
valid, otherwise we would achieve

𝑆 (𝑟∗
𝑘+1𝑁𝑑 , 𝑁𝑟 − 𝑟∗

𝑘+1𝑁𝑑) +
√︃
𝑟∗
𝑘+1 > 𝑆 (𝑟𝑘+1𝑁𝑑 , 𝑁𝑟 − 𝑟𝑘+1𝑁𝑑) +

√
𝑟𝑘+1

which violates the logic of DP algorithm presented in Equation 12. Subsequently, we can establish
𝑟1 = 𝑟 ∗1 to 𝑟𝑖 = 𝑟 ∗𝑖 for any 𝑖 < 𝐿∗. To assist understanding, we provide a specific example in Figure 5.

All things considered,𝑅𝑈 (𝑟1, 𝑟2 . . . , 𝑟𝐿) ≤ 𝑅𝑈 (𝑟 ∗1 , 𝑟 ∗2 . . . , 𝑟 ∗𝐿∗) holds onlywhen size ratios {𝑟1, . . . , 𝑟𝐿}
is identical to Moose’s setting {𝑟 ∗1 , 𝑟 ∗2 . . . , 𝑟 ∗𝐿∗}. Therefore, the expected product of range lookup
cost and update cost in Moose is asymptotically optimal. This completes the proof.

□

Assumptions and Relaxations. Common in most theoretical studies, the cost analysis entails
assumptions that the analysis is based on the worst case scenarios, and hence it necessitates the
evaluation in real KV-stores of our designs (as will be shown in Experiment Section).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:15

Level

2

1

3

#Runs

Capacity

Fig. 6. An example of space amplification analysis. In the worst case, the new data at level 1, level 2, and level

3 have 5, 4, and 2 copies in the LSM-tree respectively. Thus the space amplification is 2.625.

Here we also offer more analysis to explain why our approach still works when removing our
previous assumption on the total size of data to be retrieved for a range query 𝑡 = 𝑂 (∑𝐿

𝑖=1 𝑛𝑖𝐵). The
assumption is applied for bounding the cost of additional 𝑡

𝐵
I/Os for range lookups in retrieving

phase. Considering a more general scenario, let 𝑡 be the average retrieved data size of range lookups,
then their average additional I/Os is 𝑡

𝐵
. By applying the previous analytical approach for these

range lookups and point lookups, there is still a Pareto Curve for them with respect to the expected
cost of𝑈 · (𝑅 − 𝑡

𝐵
), where 𝑅 refers to the average cost for these range lookups.

Space Amplification. Space amplification is the ratio of the database size to the actual dataset
size. For instance, suppose an LSM-tree has 10 runs and each run stores precisely the same entries.
The corresponding space amplification is 10 since each unique entry takes up 10 times larger space
than its own data size. In other words, the space amplification of LSM-tree is represented by the
average number of copies for each unique entry. As Figure 6 presents, in the worst case, each run
at a certain level contains identical entries, and these entries are duplicated at each larger level.
Therefore, level 𝑖 contains (𝑁𝑖

𝑛𝑖
− 𝑁𝑖−1

𝑛𝑖−1
) new entries to the smaller levels (here we let 𝑁0

𝑛0
= 0). Each

new entry appears at all runs at level 𝑖 to level 𝐿 counting to
∑𝐿
𝑖=1 𝑛𝑖 copies. Additionally, there

are 𝑁𝐿

𝑛𝐿
unique entries in total given all unique entries are included by any run at the largest level.

Hence we calculate the average number of replicas to derive the space amplification 𝑆𝐴 using
Equation 15.

𝑆𝐴 =
©­«
𝐿∑︁
𝑖=1

(
𝐿∑︁
𝑗=𝑖

𝑛 𝑗 · (
𝑁𝑖

𝑛𝑖
− 𝑁𝑖−1

𝑛𝑖−1
))ª®¬

/
𝑁𝐿

𝑛𝐿

=
𝑛𝐿

𝑁𝐿
·
𝐿∑︁
𝑗=1

𝑛 𝑗 (
𝑗∑︁
𝑖=1

(𝑁𝑖
𝑛𝑖

− 𝑁𝑖−1
𝑛𝑖−1

)) = 𝑁

𝑁𝐿
· 𝑛𝐿 (15)

In our configuration, the run number of level 𝐿 is determined by the ratio between its capacity
and that of level 𝐿 − 1, which gives 𝑛𝐿 = 𝑘 ·

√︁
𝑁𝐿/𝑁𝐿−1. Then, we apply the capacity constraint

𝑁𝐿−1 < 𝑁 −𝑁𝐿 to identify the upper bound of the space amplification 𝑆𝐴. Hence we can formulate
𝑆𝐴 with 𝑁𝐿 and analyze the space efficiency of Moose, as illustrated in Equation 16. As the formula
indicates, the space amplification is well bounded when the last level capacity 𝑁𝐿 is determined.
Therefore, our DP aided three-way tradeoff method presents a satisfactory space efficiency.

𝑆𝐴 = 𝑘 ·
√︂

𝑁𝐿

𝑁𝐿−1
· 𝑁

𝑁𝐿
≤ 𝑘 · 𝑁 ·

√︂
1

𝑁𝐿 (𝑁 − 𝑁𝐿)
(16)

As indicated by Equation 16, the space amplification for Moose in default setting is less than 2.5.
We further evaluate the real space amplification in Section 4 for more comprehensive analysis.
3.6 Smoose: Workload Aware Moose

Our proposed Moose encompasses three distinct features: the specialized last level capacity 𝑁𝐿 ,
adaptive size ratio {𝑟𝑖 }, and adjustable run number 𝑛𝑖 = 𝑘 · √𝑟𝑖 . Theoretical proof has confirmed

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:16 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

that Moose is able to achieve a commendable three-way tradeoff due to its unique design and
flexibility. However, it is important to note that there does not exist a universally optimal structure
that consistently delivers peak performance across all workloads. Fortunately, by tuning the three
parameters, Moose empowers various tradeoffs among point lookup, range lookup, and update
performance to facilitate diverse work conditions. Therefore, we introduce workload aware Moose,
dubbed as Smoose, to select the optimal Moose configuration for a certain workload. To achieve
this, we propose a tractable structure adaptation method for navigating the design space of Moose,
complemented by a comprehensive searchable cost model established to evaluate the tradeoff
performance of each potential Moose configuration.
Comprehensive searchable cost model.Our comprehensive searchable cost model is a workload-
aware function that quantitatively assesses three-way tradeoff result and overall performance of a
Moose structure. This function formulates the average I/O cost of an operation through weighted
averaging. To this end, we employ the proportion of range lookup, update, and point lookup
operations, denoted as 𝑠 , 𝑢, and 𝑧, respectively, to weight their associated I/O costs 𝑆 ,𝑈 , and 𝑍 as
presented in Equation 17.

ℒ = 𝑠 · 𝑆 + 𝑢 ·𝑈 + 𝑧 · 𝑍 (17)
Previous section has discussed the I/O costs associated with different operation types. As the size

ratios 𝑟𝑖 are derived using the DP algorithm, Smoose only requires adjusting 𝑁𝐿 and 𝑘 to instantiate
a particular structure. Consequently, we can reformulate the costs as follows: 𝑆 = 𝑘

∑𝐿
𝑖=1

√
𝑟𝑖 ,

𝑈 = 1
𝑘𝐵

∑𝐿
𝑖=1

√
𝑟𝑖 , and 𝑍 = 𝑘

∑𝐿
𝑖=1 𝑝𝑖

√
𝑟𝑖 . Please note that the cost of non-zero result point lookup is

not specialized in the model since its probabilistic is uncertain for Smoose. Moreover, this cost model
can be conveniently expanded if the relevant information is furnished [14]. This cost model assists
the subsequent tractable structure adaptation process to evaluate the performance of each specific
structure within the design space, enabling the identification of the most favorable configuration.
Tractable structure adaptation.A givenworkload characterized by operation proportions {𝑠,𝑢, 𝑧}
tends to favor a particular tradeoff strategy among point lookups, range lookups, and updates that is
associated with a particular Moose configuration. At the same time, this configuration provides the
lowest cost in our proposed comprehensive searchable cost model among all potential candidates
for the given workload. Hence, we can locate this configuration by exploring within the design
space of Moose to minimize the cost model. For this purpose, we introduce a tractable structural
adaptation approach to investigate the design space and identify the appropriate configuration
based on a specific workload.

Moose has two adjustable parameters: the capacity of last level 𝑁𝐿 , and the run number regulator
𝑘 . To achieve the optimal three-way tradeoff, we design a three-step approach to determine the two
parameters. (1) To start with, we enumerate the last level capacity 𝑁𝐿 to primarily optimize the
tradeoff between point lookup performance and the RU-curve. Given the last level accommodates a
dominant portion of the entire data, we iterate through 𝑁𝐿 value from 0.5𝑁 to 𝑁 , using the buffer
size 𝐹 as step size empirical. (2) For each iteration of 𝑁𝐿 , we determine the size ratio {𝑟𝑖 } with
dynamic programming. This step mitigates the level capacity explosion problem thus resulting in a
fine-tuned RU-curve. (3) Subsequently, we enumerate 𝑘 to adjust the run numbers for attaining
optimal overall performance concerning given 𝑁𝐿 and {𝑟𝑖 }, by which the significance of range
cost is explored via tuning the tradeoff between range lookup and update. As a result, the desired
structure is the most outstanding one among all searched instances in the process which minimizes
the comprehensive searchable cost model.
Running example: Assuming 𝑁 is 100M, we initialize the last level capacity 𝑁𝐿 as 50M to obtain
corresponding size ratio set, {4, 4, 4, 2} with DP algorithm. Then, we fine-tune the number of runs
{𝑛𝑖 } by varying 𝑘 from 0.5 to 2 (note 𝑛𝑖 = 𝑘

√
𝑟𝑖), among which 𝑘 = 1 yields the minimum cost

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:17

Table 3. The output of Smoose in 10 different workloads. “ris” and “nis” are the sequence of size ratios and

number of runs of each level, respectively.

A B C D E
ris 20,26,19 10,11,11,8 27,27,13 26,20,19 7,7,7,8,3
nis 1,1,1 10,11,11,7 2,2,1 1,1,1 7,7,7,8,3

F G H I J
ris 11,11,12,6 11,11,12,6 11,12,11,6 7,7,7,7,3 11,12,11,6
nis 2,2,2,1 2,2,2,1 1,1,1,1 2,2,2,2,1 2,2,2,1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8

QLSM-Bush

MOOSE
Tiering

Leveling

LazyLeveling

no
rm

al
iz

ed
th

ro
ug

hp
ut

(A) % range lookup

 range lookup vs. update tradeoff

 0.2 0.4 0.6 0.8

QLSM-Bush

MOOSE

Tiering

Leveling

LazyLeveling

(B) % point lookup

 point lookup vs. update tradeoff

 0.2 0.4 0.6 0.8

QLSM-Bush

MOOSE
Tiering

Leveling

LazyLeveling

(C) # point lookup / # lookups

 point vs. range lookup vs. update tradeoff

Fig. 7. Evaluating the trade-off between different operations. Moose outperforms all the other baselines in

most workloads.

according to Equation 17. Hence, we derive the optimal structure for 𝑁𝐿 = 50M characterized by
the size ratio {4, 4, 4, 2} and 𝑘 = 1. Next, we increase 𝑁𝐿 from 50M to 99M by 1M and repeat the
above procedure to search the desirable structure reaching minimum cost.

Moreover, the tractable structure adaptation presents satisfactory computation efficiency. It takes
an average of 1.52s, with amaximumof 4.43s, to determine a desirable structure as𝑁 varies from 1GB
to 16GB. Therefore, while initially designed for static workload tuning, the impressive computational
efficiency of Smoose suggests its potential for supporting future dynamic applications. To be
specific, minor workload variations could be accommodated without adaptation and maintain
sound performance. While substantial changes in workload require structural transformation to
modify capacities and run numbers at each level. Hence, a lazy strategy [41] and preemptive
compaction [16] could be utilized to reduce transformation costs while maintaining competitive
overall performance.

4 EVALUATION

This section presents the experimental evaluation of Moose and Smoose under diverse workloads.
The outcomes indicate that both Moose and Smoose demonstrate remarkable competitiveness
compared to various baselines. The experiments are conducted on a server equipped with an Intel(R)
Xeon(R) W-2235 CPU at 3.80GHz, 32GB of DDR4 main memory, and a 512GB SATA SSD, running a
64-bit Ubuntu 20.04 on an ext4 partition.
Implementation.Moose and Smoose are implemented on top of RocksDB [22], a well-known
LSM-tree storage engine. We extend the basic Bloom filter policy in RocksDB to Monkey Filter
policy for all the baselines, which allows us to set a different bits-per-key at different levels. As for
Moose (abbr. MSE), we employ the default setting, 𝑁𝐿 = 0.8𝑁 and 𝑛𝑖 =

√
𝑟𝑖 for run numbers, while

calculating the size ratios 𝑟𝑖 using dynamic programming.
Baselines.We conduct a comparative analysis of our methodology against several conventional
baseline approaches, which encompass Leveling [23] (abbr. Lv), Tiering [32] (abbr. Tr), Lazy-
Leveling [15] (abbr. LL), and QLSM-Bush [16] (abbr. Bsh). For Leveling, Tiering, and Lazy-Leveling,
we set the size ratio𝑇 to 10, in accordance with the default size ratio of RocksDB [22]. In the case of

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:18 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

Group 1: not workload aware Group 2: workload aware
Table 4. Workload composi-

tion and performance ranking

A B C D E F G H I J
range(%) 98 1 1 49 2 49 40 40 20 33
update(%) 1 98 1 2 49 49 40 20 40 33
point(%) 1 1 98 49 49 2 20 40 40 33

Work-
Load

Not workload aware Workload aware
Lv Tr LL Bsh MSE* Dos TRDB SMSE*

A 4 7 6 8 5 2 3 1
B 8 4 7 2 5 3 6 1
C 3 7 6 8 5 1 3 1
D 4 7 6 8 5 2 3 1
E 8 5 4 7 2 3 6 1
F 4 6 7 8 2 5 3 1
G 4 7 6 8 2 4 3 1
H 5 7 6 8 3 4 2 1
I 7 6 4 8 1 3 5 1
J 5 7 6 8 2 4 3 1

Avg. 5.2 6.3 5.8 7.3 3.2 3.1 3.7 1

Fig. 8. The composition of the workload is graphed on the x-axis as (range lookup, update, point lookup). In a

general sense, Moose surpasses the other baselines in group 1, with the exception of certain highly read/write

intensive workloads.Smoose outperforms all other baseline systems across all types of workloads in group 1

and group 2. The table on the right denotes the ranking of each method under each workload. The number

underlined is the top-ranked in each group.

QLSM-Bush, we employ 𝑇 = 2 and 𝑋 = 2, following the recommendations outlined in the original
paper [16]. The buffer size for all the baseline systems is set at 2MB. Furthermore, we allocate a
Bloom filter budget of 5 bits per key, in accordance with the default configuration in RocksDB.

We assess the performance of Smoose (abbr. SMSE) with three-way-mixed workloads and make
a comparative evaluation against another workload-aware designs, Dostoevsky [15] (abbr. Dos). To
ensure equitable comparisons, we configure both methods using identical workload parameters
(i.e., the proportion of each operations). In addition, to illustrate the practical effectiveness, we also
compare the result of the tuned RocksDB (abbr. TRDB) [15].
Experiment design. In data preparation phase, we bulk load approximately 11GB data into the
database, featuring random key-value pairs. Each pair is comprised of a 24B key and a 1000B value.
Subsequently, each baseline will be subjected to testing across a range of workloads, each consisting
of 2,000,000 operations.
Overall, Moose exhibits desirable performance and robustness across a spectrum of

different workloads. In Figure 7 (A), we evaluate mixed workloads comprising range lookups
and updates, with varying proportions of range lookups from 10% to 90%. As the proportion
of range lookups increases, Leveling is preferred for its fewer sorted runs. For workloads with
substantial updates, Tiering is favored as it is optimized for writes. Lazy-Leveling balances update
throughput and range lookup performance, outperforming Tiering in the latter. However, QLSM-
Bush, prioritizing updates, compromises range lookup performance, leading to inadequate overall
performance. Moose outperforms other baselines in this experiment, except for two range-lookup-
intensive workloads, where it is slightly less efficient than Leveling. This validates Moose’s ability
to achieve a superior tradeoff between range lookups and updates.

In Figure 7 (B), the tested workload mixes point lookups and updates, varying the proportion of
point lookups from 10% to 90% to examine Moose’s ability on point lookup-update tradeoff. QLSM-
Bush excels in substantial update scenarios but degrades with heavy reads. Tiering is preferable for
update-dominant workloads, while Leveling is better for read-dominant scenarios. Lazy-Leveling
achieves a balanced performance by combining Tiering and Leveling policies. Moose showcases

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:19

µ

Performance of different Layouts CPU Overhead of (De)compression

Performance when enabling compression Space Amplification

Table 5. The number of IO per query, compacted

bytes (GB), and the number of compaction in

format "#IO/compaction byte/#compaction".

Not workload aware Workload aware

Leveling Tiering LazyLevel QLSM-Bush MOOSE* Dostoevsky TRDB SMOOSE*

A 4.23/1/6 17.9/10/1 14.0/2/1 139/0/0 5.98/2/6 3.45/1/5 3.45/1/206 2.29/1/6

B 4.25/31/561 0.96/6/103 2.20/16/103 1.63/2/4 1.68/13/656 1.13/8/102 2.56/19/1084 0.68/4/100

C 0.21/31/6 0.97/6/1 0.40/15/1 2.34/2/0 0.28/13/6 0.19/8/6 0.28/19/247 0.14/4/6

D 2.24/1/12 10.1/1/2 7.91/1/2 72.9/0/0 3.22/1/12 1.85/1/11 1.98/2/254 1.46/1/13

E 2.32/17/283 1.10/3/52 0.80/3/52 3.13/1/2 1.02/6/328 0.89/5/189 1.63/10/447 0.80/3/73

F 4.56/33/302 11.5/6/52 10.9/16/52 67.9/2/2 4.48/12/329 4.59/21/302 4.10/22/511 3.61/12/329

G 3.67/29/247 9.18/6/42 7.48/15/42 59.8/2/2 3.66/11/268 3.69/29/246 3.37/24/451 2.89/17/268

H 2.69/19/123 8.68/3/21 6.89/3/21 57.6/2/1 3.24/7/134 2.70/19/123 2.66/15/332 2.10/11/133

I 2.73/19/246 4.98/3/42 3.99/3/42 30.1/2/2 2.24/7/268 2.22/13/295 2.59/13/320 1.90/9/268

J 2.94/22/203 7.57/3/34 6.08/3/34 49.5/2/1 3.06/9/221 2.95/17/203 2.79/17/406 2.35/12/222

Fig. 9. (A) presents the capability of Moose under different storage layouts (noted as "Layout,Key-Value-Size",

"C" means "Column Store" while "R" means "Row Store") compared to RocksDB; (B) and (C) shows the

performance after integrating different compression policies; (D) presents the actual space amplification of

various methods

nearly ideal throughput in write-intensive workloads and remarkably outperforms all the baselines
under most workloads, demonstrating the capability of Moose in maintaining a desired point
lookup-update tradeoff.

In Figure 7 (C), to further explore the tradeoffs between mixed read operations, including point
lookups and range lookups, we vary the ratio of point lookup over the total number of reads. The
total number of reads is fixed to 50% of the entire operations while the remaining are updates. For
workloads with a lower proportion of range lookups, Tiering and QLSM-Bush perform better due
to their retention of significant sorted runs. Conversely, in range-lookup-intensive scenarios with a
low proportion of point lookups, Leveling excels. The cost of Lazy-Leveling is relatively higher
than Tiering due to the presence of 50% updates. Despite maintaining numerous sorted runs to
reduce update costs, Lazy-Leveling lags behind Leveling in this experiment when there is a high
proportion of range lookups. Moose outperforms all other approaches in all workloads, indicating
its ability to strike the best tradeoff among the three types of operations.

In general, our proposed Moose delivers more impressive and robust performance for different
operation portions for range lookups and updates in comparison with all baselines, indicating
Moose’s positioning along a superior RU-curve. Besides, it does not affect the point lookup perfor-
mance thus striking outstanding performance for all workloads. Despite the remarkably changing
workloads, Moose consistently proves highly competitive, showcasing its robustness and effective
optimization compared to existing designs.
Exploring a wider space enables Smoose to outperform all baselines in three-way mixed

workloads. The baselines in this experiment can be divided into two groups, the non-workload-
aware group and the workload-aware group. Following the setting of existing works (e.g., [8, 26]),
we conduct the three-way-mixed workloads for Leveling, Tiering, QLSM-Bush, Moose, Dostoevsky,
and Smoose. The composition of operations in each workload and the result are depicted in Figure 8.
Generally, Smoose outperforms all baselines or demonstrates comparable performance across all
workloads. Specifically for the non-workload-aware group, no one baseline can be the best setting
under all the workloads, but Moose performs the best or near the best in most cases, indicating its
strong robustness. This can be attributed to Moose’s adeptness in achieving a well-balanced tradeoff

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:20 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

among the three operations. Though Moose cannot maintain such advantage as the workloads
become not even, its performance is still around the best settings.

To bridge this gap, Smoose leverages the proportions of each operation type, enabling the dynamic
programming algorithm to adjust the contribution of each operation. Therefore, Smoose consistently
outperforms or achieves comparable results to other methods, including Moose. In comparison
to other well-established workload-aware baselines, Dostoevsky and tuned RocksDB, Smoose
demonstrates superiority in most cases though Dostoevsky presents comparative performance
with Smoose under workload C. This outcome is attributed to the broader design space explored
by Smoose. As previously mentioned, Smoose can vary the size ratios across different levels and
obtain different run numbers at varying levels with fewer constraints by adjusting the parameter
𝑘 . In contrast, Dostoevsky maintains a fixed size ratio across different levels and sets only two
distinct run numbers for the last level and all the non-last levels. Consequently, Dostoevsky may
overlook the better design space explored by Smoose. Similarly, though we can tune RocksDB
with various size ratios for different workloads, the narrow design space restrains its capability to
achieve competitive performance except for some read-intensive scenarios.

Let us consider workload G, where the composition of range lookups, updates, and point lookups
is 40%, 40%, and 20%. Dostoevsky tunes within its configuration space and derives a Leveling-like
structure with 𝑇=10 for this workload. This outcome aligns with expectations, as read operations
(range lookups and point lookups) constitute 60% of the overall workload, favoring structures with
a lower number of runs. The experimental results further confirm that this configuration surpasses
all competitors except for Moose and Smoose. However, Moose’s size ratios and run numbers fall
outside the search space of Dostoevsky. This configuration achieves better performance because it
takes into account the optimization tradeoff between range lookups and updates simultaneously.
Moreover, though Moose already demonstrates exceptional performance, Smoose manages to dis-
cover a more desirable structure by fine-tuning parameters such as 𝑘 and 𝑁𝐿 . Through adjustments
to the dynamic programming cost function that considers the workload composition, Smoose
conducts a more precise search. Furthermore, Smoose can adapt 𝑁𝐿 according to the proportion
of point lookups, resulting in a more balanced performance across all three operations. Smoose
selects size ratios of 11 or 12 for all non-last levels with 𝑁𝐿 = 0.85𝑁 and run numbers set to 2 for
all non-last levels, which also lie outside the search space of Dostoevsky. The output of Smoose for
different workloads is shown in Table 3.
To further illustrate the capability of Smoose and Moose, we present the raw metrics, such as

the number of IO and compaction, and the compacted bytes in Table 5. It is obvious that in all cases,
Smoose demonstrate an outstanding performance while Moose can also perform robustly within
the non-workload-aware group.

Overall, Moose consistently exhibits outstanding performance, albeit with slight variations when
one type of operation dominates. Therefore, we introduce Smoose to utilize workload information.
Compared to Dostoevsky, Smoose’s structural flexibility enables it to potentially identify more
desirable choices for specific workloads.
Discussion 1: Impact of various 𝑘 . Figure 10 (A) shows how the choices of 𝑘 might affect the
performance on reads and updates. In this experiment, we range 𝑘 from 1/√𝑟𝑚𝑎𝑥 to √

𝑟𝑚𝑎𝑥 and
gather the cumulative latency for each specific operation type, where 𝑟𝑚𝑎𝑥 represents the maximum
size ratio. Since the run number for each level must be a non-zero integer and not exceed the size
ratio, thus rounding is required when this rule is violated. Evidently, as 𝑘 increases, the performance
of lookups tends to decrease because higher 𝑘 values may increase the number of sorted runs
at each level, potentially deteriorating read performance. Conversely, reduced WA per level may
enhance update performance. Notably, the cost of point lookups is significantly lower than other

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:21

our
choice

Fig. 10. (A) presents total latency of each operation indicating the positive/negative correlation between 𝑘

and update/lookups, respectively. (B) shows the reason why we select 𝑁𝐿 = 0.8𝑁 as Moose’s default setting;

(C) presents Moose’s consistent superiority on growing 𝑁 ; (D) shows the accurate prediction of Smoose

operations, prompting our search algorithm to prioritize optimizing range lookups and updates,
even if it means sacrificing some point lookup performance.
Discussion 2: Impact of different choices of 𝑁𝐿 . In Moose we employ the hyper-parameter 𝑁𝐿
to tune the tradeoff between point lookups and overall performance of range lookups and updates.
To substantiate our default choice of 𝑁𝐿 = 0.8𝑁 in Moose, we maintain a constant value 𝑘 = 1 and
employworkload D, E, F, and J, the two-way/three-way uniformedworkloads, to examine its efficacy,
as is shown in Figure 10 (B). Evidently, a local minimum point exists near 𝑁𝐿 = 0.8𝑁 across all
workloads. Specifically, for point lookup intensive workloads like D and E, a larger 𝑁𝐿 is preferable.
However, this may compromise the tradeoff between range lookups and updates. For achieving
satisfactory overall performance, 𝑁𝐿 = 0.8𝑁 presents optimal point lookup performance without
significantly compromising range lookup and update performance across all workloads. Though
𝑁𝐿 = 0.65𝑁 seems competitive in the figure, it cannot win the comprehensive gains compared to
our choice. For instance, the size ratios and run numbers for them are {12, 17, 18, 2}/{3, 4, 4, 1} and
{7, 7, 7, 6, 5}/{3, 3, 3, 2, 2}, respectively. The latter suffers higher cumulative overall cost due to its
smaller 𝑁𝐿 though presenting marginally better update cost.
Discussion 3: Performancewith growing𝑁 . In Section 3.4, we address the scenario of growing𝑁 .
In Figure 10 (C), we examine Moose with 8GB data inserted under a balanced workload. Generally,
Moose showcases superiority throughout the entire process. LazyLeveling slightly outperforms
Leveling and Tiering, while QLSM-Bush exhibits poor performance due to a high number of range
lookup operations.
Discussion 4: Prediction accuracy of cost model. We vary the last level capacity and compare
predicted costs with actual latencies. For clarity, we normalize them respectively in Figure 10 (D)
since predicted costs pertain to I/O times. The alignment between predictions and actual values
underscores the efficacy of our cost model in guiding structural tuning. Moreover, the structure
identified by Smoose consistently corresponds to the actual optimal latency.
Discussion 5: Effectiveness in practical environments. We expand the scope of Moose to
accommodate varying key-value sizes and storage layouts (column/row store) to assess its effective-
ness in practical systems. Moreover, we incorporate column accessing into the workload to realize
the performance enhancement presented in most associated database systems [5, 24, 51]. In Figure 9
(A), Moose outperforms RocksDB significantly, affirming its effectiveness across diverse access
patterns and storage layouts. Specifically, adopting column layout does not compromise the overall
superiority of Moose across varying key-value sizes. This is attributed to the fact Moose directly
optimizes the comprehensive I/O cost. Since column accessing, though retrieves only portions of
the value, it presents similar I/O costs to regular access operations and can still benefit from Moose.
Regarding another crucial industry feature, SSTable compression, we evaluate Moose with Snappy,
Zlib, and BZip2 compression algorithms and compare its performance with RocksDB in Figure 9
Parts (B) and (C). Obviously, Moose exhibits significantly lower latency. This is because an SSTable

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:22 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

is compressed or decompressed to/from disks only for write or read operations. Consequently, the
compression time is generally proportional to I/O times. Hence the additional overhead introduced
by compression/decompression could be mitigated by Moose concurrently.
Discussion 6: Space amplification evaluation. Figure 9 (D) evaluates the actual space amplifica-
tion (SA) with 𝑁 growing from 1GB to 12GB. Notably, Leveling exhibits the smallest SA, while
Moose ranks the second smallest. Note that, Leveling represents the optimal compaction style
in terms of SA due to its having only one sorted run at each level. This experiment validates the
satisfactory performance of Moose concerning SA.
Summary. Overall, while each design has adept workloads, Moose achieves desirable performance
when the workload changes. We further introduce Smoose, a versatile and searchable design with
only a few knobs, to adapt to specific workloads and outperform the existing continuum design as
presented in the experiments.

5 RELATEDWORK

Key-value stores. Over the past decade, numerous research has emerged concerning key-value
stores (KVS). Some hardware oriented studies [6, 20, 33, 52, 55, 57, 60, 64] design specialized KVS to
deploy on modern storage devices, including advanced SSDs [20, 52, 60] and persistent memory [33,
66, 68], to enhance the parallel processing capabilities [57] and write performance [6, 55, 64].
For facilitating cloud servers, Idreos et al. [28] present a KVS design space consisting of various
hardware and data layout strategies [3, 49]. Based on this, Cosine [8] is proposed to quantify the
overhead of KVS on the cloud and tune for specific workload distribution. Conway et al. [11]
propose Mapped SplinterDB to improve lookup performance of SplinterDB. Wang et al. [58] reduce
the software overhead for the KVS designed in memory disaggregated architecture. Compared
with our work, these studies are oriented towards enhancing diverse key-value stores or full DBMS
like Spanner [5], rather than being specifically tailored to the LSM-trees.
LSM-tree performance optimization. To enhance point lookup performance, Monkey [14]
assigns more Bloom filter BPK for smaller levels. Li et al. [67] and Zhu et al. [69] reach the same
target by applying Bloom filter modification. Moreover, Chucky [17] and SSCF [34] replace the
Bloom filter with alternative components, which allows them to reach superior point lookup
performance with reduced storage overhead. Besides, SA-LSM [63] and Bi-directional LSM-tree [65]
change data distribution to speed up lookup operations of frequently accessed data for handling
the skewed workload. Vu [56] et al.study the incremental spatial partitioning problem to decrease
the lookup latency for big data [21].
To boost range lookup efficiency, various range filters have been proposed. Zhang et al. [62]

record the inserted keys with fast succinct tries to utilize the sequential information. Luo et

al. [38] proposed a Bloom filter based method to encode the existence of keys with hierarchical
structure, which is subsequently enhanced by bloomRF [42]. Based on these works, Proteus [30] and
REncoder [59] are proposed to employ hybrid structures. Moreover, Vaidya et al. [54] introduced
learned model which is followed by OASIS [9] and presented satisfactory performance. To facilitate
adversarial queries, Grafite [12] is designed with impressive space complexity.
For pursuing higher update performance, many works utilize modified compaction schema

including delayed compaction [44], light-weight compaction [53, 61], and compaction warm-up [1].
To start with, Patrick [43] proves a fixed size ratio is update-friendly for Level-like structures.
Wisckey [36] and HashKV [7] demonstrate that key-value separation is another approach to
improve update performance. Additionally, Dai et al. [13] propose Bourbon, a learned index, to
accelerate the point lookup operations for these methods. Meanwhile, Nova-LSM [25] parallelizes
compaction by storage and process separation. Luo et al. [37] and Kim et al. [29] identify memory

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:23

contention between buffer and Bloom filter, allowing them to adjust point lookup and update trade-
off by tuning memory allocation strategy. For mitigating the issue of space amplification, Sarkar
et al. [47], Dayan et al. [18], and Alkowaileet et al. [2] modify the compaction granularity [40] to
expedite garbage collection. These approaches often focus on single or dual optimization objectives,
rather than simultaneously optimizing point lookup, range lookup, and update. Besides, they are
typically orthogonal to our work, as they rarely involve tuning the LSM-tree structure.
LSM-tree structure tuning. The works optimizing the LSM-tree performance via tuning the
LSM-tree structure are more related to our work. Endure [26] leverages a globally consistent size
ratio and selects compaction policies between leveling and tiering. Sarkar et al. [48] present the
design space of LSM-tree compaction and evaluate various compaction strategies. Dostoevsky [15]
enables more flexible compaction by adjusting the number of runs per level, ranging from 1 to the
size ratio, for the last and non-last levels. Ruskey[41] proposes a further extended design space by
allowing flexible compaction for all levels and utilizes a reinforcement learning algorithm [50] to
explore it. K-LSM [27] also considers flexible compactions across levels, while integrating a novel
tuning approach to determine the structure for facilitating workload uncertainty. It proposed a
general solution that could also empower Smoose to handle workload uncertainty with modified
cost model. For example, uncertain workload distribution can be described with KL-Divergence
and formulated as W = {𝑤̂ ∈ R3 |𝑤̂ ≥ 0, 𝑤̂𝑇 𝑒 = 1, 𝐼𝐾𝐿 (𝑤̂,𝑤) ≤ 𝜌}, where 𝜌 describes the divergent
range,𝑤 is the target workload indicating the proportion of range read(𝑠), update(𝑢), point lookup(𝑧)
at each dimension, and 𝐼𝐾𝐿 is the KL-Divergence between the target workload and the uncertain
workload 𝑤̂ . Accordingly, the cost function of Smoose turns out to be max𝑤̂∈W (𝑠𝑆+𝑢𝑈 +𝑧𝑍), which
could be minimized using Lagrange Multiplier for deriving the suitable structure. Moreover, in our
paper, we further broadened and explored the LSM-tree design space by considering the level-wise
adjustment of size ratios and run numbers. This introduces notable challenges, necessitating the
non-trivial optimization techniques proposed in our work. Dayan et al. [16] explore this constraint
by introducing an exponentially decreasing size ratio between adjacent levels and propose QLSM-
Bush, which achieves satisfactory update performance. Comparatively, we explore a more extensive
design space thus empowering the LSM-tree to achieve a superior three-way trade-off.
6 CONCLUSION

Current LSM-tree key-value stores struggle to optimize all the three operations concurrently due to
rigid configurations. To address this, we remove constraints on run number, size ratio, and Bloom
filter, facilitating a comprehensive theoretical analysis of the cost for each operation. We present
Moose, with a specialized last level optimized for point lookup and a flexible size ratio benefiting
range lookup and update. In response to diverse workloads, we introduce Smoose, a workload-
aware structure, to achieve an optimal tradeoff. Both Moose and Smoose demonstrate a desirable
three-way tradeoff and outstanding performance, as validated theoretically and experimentally. In
the future, it would be interesting to integrate our work into actual DBMS [5, 24, 51] or LSM-Tree
Index to examine the efficacy and attain further gains.

ACKNOWLEDGMENTS

This research is supported by NTU-NAP startup grant (022029-00001). We thank the anonymous
reviews for their valuable suggestions.

REFERENCES

[1] Muhammad Yousuf Ahmad and Bettina Kemme. 2015. Compaction management in distributed key-value datastores.
Proceedings of the VLDB Endowment 8, 8 (2015), 850–861.

[2] Wail Y Alkowaileet, Sattam Alsubaiee, and Michael J Carey. 2019. An LSM-based Tuple Compaction Framework for
Apache AsterixDB (Extended Version). arXiv preprint arXiv:1910.08185 (2019).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

175:24 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

[3] Wail Y Alkowaileet and Michael J Carey. 2021. Columnar formats for schemaless LSM-based document stores. arXiv
preprint arXiv:2111.11517 (2021).

[4] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan. 2013. Linkbench: a database
benchmark based on the facebook social graph. In SIGMOD. 1185–1196.

[5] David F Bacon, Nathan Bales, Nico Bruno, Brian F Cooper, Adam Dickinson, Andrew Fikes, Campbell Fraser, Andrey
Gubarev, Milind Joshi, Eugene Kogan, et al. 2017. Spanner: Becoming a SQL system. In Proceedings of the 2017 ACM

International Conference on Management of Data. 331–343.
[6] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: An efficient hybrid pmem-dram key-value store.

Proceedings of the VLDB Endowment 14, 9 (2021), 1544–1556.
[7] Helen HW Chan, Chieh-Jan Mike Liang, Yongkun Li, Wenjia He, Patrick PC Lee, Lianjie Zhu, Yaozu Dong, Yinlong Xu,

Yu Xu, Jin Jiang, et al. 2018. HashKV: Enabling Efficient Updates in KV Storage via Hashing. In 2018 USENIX Annual

Technical Conference (USENIX ATC 18). 1007–1019.
[8] Subarna Chatterjee, Meena Jagadeesan, Wilson Qin, and Stratos Idreos. 2021. Cosine: a cloud-cost optimized self-

designing key-value storage engine. Proceedings of the VLDB Endowment 15, 1 (2021), 112–126.
[9] Guanduo Chen, Zhenying He, Meng Li, and Siqiang Luo. 2024. Oasis: An Optimal Disjoint Segmented Learned Range

Filter. Proceedings of the VLDB Endowment (2024).
[10] Source Code. 2022. WiredTiger. https://github.com/wiredtiger/wiredtiger.
[11] Alex Conway, Martín Farach-Colton, and Rob Johnson. 2023. SplinterDB and Maplets: Improving the Tradeoffs in

Key-Value Store Compaction Policy. Proceedings of the ACM on Management of Data 1, 1 (2023), 1–27.
[12] Marco Costa, Paolo Ferragina, and Giorgio Vinciguerra. 2024. Grafite: Taming Adversarial Queries with Optimal

Range Filters. Proceedings of the ACM on Management of Data 2, 1 (2024), 1–23.
[13] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea Arpaci-Dusseau, and Remzi

Arpaci-Dusseau. 2020. From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 20). 155–171.
[14] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal navigable key-value store. In Proceedings

of the 2017 ACM International Conference on Management of Data. 79–94.
[15] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores

via Adaptive Removal of Superfluous Merging. In Proceedings of the 2018 International Conference on Management

of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA, 505–520.
https://doi.org/10.1145/3183713.3196927

[16] Niv Dayan and Stratos Idreos. 2019. The log-structured merge-bush & the wacky continuum. In Proceedings of the 2019

International Conference on Management of Data. 449–466.
[17] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-Tree. In Proceedings of the 2021

International Conference on Management of Data. 365–378.
[18] Niv Dayan, Tamar Weiss, Shmuel Dashevsky, Michael Pan, Edward Bortnikov, and Moshe Twitto. 2022. Spooky:

granulating LSM-tree compactions correctly. Proceedings of the VLDB Endowment 15, 11 (2022), 3071–3084.
[19] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor, and Michael Strum. 2017. Optimizing

Space Amplification in RocksDB.. In CIDR, Vol. 3. 3.
[20] Carl Duffy, Jaehoon Shim, Sang-Hoon Kim, and Jin-Soo Kim. 2023. Dotori: A Key-Value SSD Based KV Store. Proceedings

of the VLDB Endowment 16, 6 (2023), 1560–1572.
[21] Ahmed Eldawy, Vagelis Hristidis, Saheli Ghosh, Majid Saeedan, Akil Sevim, AB Siddique, Samriddhi Singla, Ganesh

Sivaram, Tin Vu, and Yaming Zhang. 2021. Beast: Scalable exploratory analytics on spatio-temporal data. In Proceedings

of the 30th ACM International Conference on Information & Knowledge Management. 3796–3807.
[22] Facebook. 2022. RocksDB. https://github.com/facebook/rocksdb.
[23] Google. 2022. LevelDB. https://github.com/google/leveldb/.
[24] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei

Cao, and Qiang Li. 2019. X-Engine: An Optimized Storage Engine for Large-Scale E-Commerce Transaction Processing.
In Proceedings of the 2019 International Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19).
Association for Computing Machinery, New York, NY, USA, 651–665. https://doi.org/10.1145/3299869.3314041

[25] Haoyu Huang and Shahram Ghandeharizadeh. 2021. Nova-LSM: a distributed, component-based LSM-tree key-value
store. In Proceedings of the 2021 International Conference on Management of Data. 749–763.

[26] Andy Huynh, Harshal A Chaudhari, Evimaria Terzi, and Manos Athanassoulis. 2022. Endure: a robust tuning paradigm
for LSM trees under workload uncertainty. Proceedings of the VLDB Endowment 15, 8 (2022), 1605–1618.

[27] Andy Huynh, Harshal A Chaudhari, Evimaria Terzi, and Manos Athanassoulis. 2024. Towards flexibility and robustness
of LSM trees. The VLDB Journal (2024), 1–24.

[28] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew Ross, James Lennon, Varun Jain,
Harshita Gupta, David Li, et al. 2019. Design Continuums and the Path Toward Self-Designing Key-Value Stores that

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

https://github.com/wiredtiger/wiredtiger
https://doi.org/10.1145/3183713.3196927
https://github.com/facebook/rocksdb
https://github.com/google/leveldb/
https://doi.org/10.1145/3299869.3314041

Structural Designs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal Configuration Space 175:25

Know and Learn.. In CIDR.
[29] Taewoo Kim, Alexander Behm, Michael Blow, Vinayak Borkar, Yingyi Bu, Michael J Carey, Murtadha Hubail, Shiva

Jahangiri, Jianfeng Jia, Chen Li, et al. 2020. Robust and efficient memory management in Apache AsterixDB. Software:
Practice and Experience 50, 7 (2020), 1114–1151.

[30] Eric R Knorr, Baptiste Lemaire, Andrew Lim, Siqiang Luo, Huanchen Zhang, Stratos Idreos, and Michael Mitzenmacher.
2022. Proteus: A Self-Designing Range Filter. In Proceedings of the 2022 International Conference on Management of

Data. 1670–1684.
[31] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas. 2018. Coconut: A Scalable Bottom-Up

Approach for Building Data Series Indexes. PVLDB 11, 6 (2018), 677–690.
[32] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage system. ACM SIGOPS

Operating Systems Review 44, 2 (2010), 35–40.
[33] Sekwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K Aguilera, Kimberly Keeton, and Vijay Chidambaram. 2022.

DINOMO: an elastic, scalable, high-performance key-value store for disaggregated persistent memory. Proceedings of
the VLDB Endowment 15, 13 (2022), 4023–4037.

[34] Meng Li, Deyi Chen, Haipeng Dai, Rongbiao Xie, Siqiang Luo, Rong Gu, Tong Yang, and Guihai Chen. 2022. Seesaw
Counting Filter: An Efficient Guardian for Vulnerable Negative Keys During Dynamic Filtering. In Proceedings of the

ACM Web Conference 2022. 2759–2767.
[35] LinkedIn. 2022. Voldemort. http://www.project-voldemort.com.
[36] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and Remzi H

Arpaci-Dusseau. 2017. Wisckey: Separating keys from values in ssd-conscious storage. ACM Transactions on Storage

(TOS) 13, 1 (2017), 1–28.
[37] Chen Luo and Michael J Carey. 2020. Breaking down memory walls: adaptive memory management in LSM-based

storage systems. Proceedings of the VLDB Endowment 14, 3 (2020), 241–254.
[38] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and Stratos Idreos. 2020. Rosetta: A robust

space-time optimized range filter for key-value stores. In Proceedings of the 2020 ACM SIGMOD International Conference

on Management of Data. 2071–2086.
[39] Siqiang Luo, Ben Kao, Guoliang Li, Jiafeng Hu, Reynold Cheng, and Yudian Zheng. 2018. Toain: a throughput optimizing

adaptive index for answering dynamic k nn queries on road networks. Proceedings of the VLDB Endowment 11, 5 (2018),
594–606.

[40] Qizhong Mao, Mohiuddin Abdul Qader, and Vagelis Hristidis. 2020. Comprehensive comparison of LSM architectures
for spatial data. In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 455–460.

[41] Dingheng Mo, Fanchao Chen, Siqiang Luo, and Caihua Shan. 2023. Learning to Optimize LSM-trees: Towards A
Reinforcement Learning based Key-Value Store for Dynamic Workloads. arXiv preprint arXiv:2308.07013 (2023).

[42] Bernhard Mößner, Christian Riegger, Arthur Bernhardt, and Ilia Petrov. 2023. bloomRF: On performing range-queries
in Bloom-Filters with piecewise-monotone hash functions and prefix hashing. In Advances in database technology:

Proceedings of the 26th International Conference on Extending database Technology (EDBT), 28th March-31st March 2023,

Ioannina, Greece, Vol. 26. Open Proceedings. org, Univ. of Konstanz, 131–143.
[43] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The log-structured merge-tree (LSM-tree).

Acta Informatica 33, 4 (1996), 351–385.
[44] Fengfeng Pan, Yinliang Yue, and Jin Xiong. 2017. dCompaction: Delayed compaction for the LSM-tree. International

Journal of Parallel Programming 45, 6 (2017), 1310–1325.
[45] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gilad Oved, Zachary Keener, Vijay Chidambaram, and Ittai

Abraham. 2018. {mLSM}: Making Authenticated Storage Faster in Ethereum. In 10th USENIX Workshop on Hot Topics

in Storage and File Systems (HotStorage 18).
[46] Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins, and Nat Storer. 2017. Littletable: A time-series database and its

uses. In Proceedings of the 2017 ACM International Conference on Management of Data. 125–138.
[47] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanassoulis. 2020. Lethe: A tunable delete-

aware LSM engine. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 893–908.
[48] Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis. 2022. Constructing and Analyzing the

LSM Compaction Design Space (Updated Version). arXiv preprint arXiv:2202.04522 (2022).
[49] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: a general purpose log structured merge tree. In Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data. 217–228.
[50] AB Siddique, Samet Oymak, and Vagelis Hristidis. 2020. Unsupervised paraphrasing via deep reinforcement learning.

In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 1800–1809.
[51] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis, Tobias Grieger, Kai Niemi, Andy

Woods, Anne Birzin, Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy
Zhang, and Peter Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In Proceedings of the 2020

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

http://www.project-voldemort.com

175:26 Junfeng Liu, Fan Wang, Dingheng Mo, & Siqiang Luo

ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for
Computing Machinery, New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.3386134

[52] Yu, Geoffrey X and Markakis, Markos and Kipf, Andreas and Larson, Per-Åke and Minhas, Umar Farooq and Kraska,
Tim. 2022. TreeLine: an update-in-place key-value store for modern storage. Proceedings of the VLDB Endowment 16, 1
(2022), 99–112.

[53] Risi Thonangi and Jun Yang. 2017. On log-structured merge for solid-state drives. In 2017 IEEE 33rd International

Conference on Data Engineering (ICDE). IEEE, 683–694.
[54] Kapil Vaidya, Subarna Chatterjee, Eric Knorr, Michael Mitzenmacher, Stratos Idreos, and Tim Kraska. 2022. SNARF: a

learning-enhanced range filter. Proceedings of the VLDB Endowment 15, 8 (2022), 1632–1644.
[55] Tobias Vinçon, Sergej Hardock, Christian Riegger, Julian Oppermann, Andreas Koch, and Ilia Petrov. 2018. Noftl-kv:

Tackling write-amplification on kv-stores with native storage management. In Advances in database technology-EDBT

2018: 21st International Conference on Extending Database Technology, Vienna, Austria, March 26-29, 2018. proceedings.
University of Konstanz, University Library, 457–460.

[56] Tin Vu, Ahmed Eldawy, Vagelis Hristidis, and Vassilis Tsotras. 2021. Incremental partitioning for efficient spatial data
analytics. Proceedings of the VLDB Endowment 15, 3 (2021), 713–726.

[57] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang, and Jason Cong. 2014. An efficient
design and implementation of LSM-tree based key-value store on open-channel SSD. In Proceedings of the Ninth

European Conference on Computer Systems. 1–14.
[58] Ruihong Wang, Jianguo Wang, Prishita Kadam, M Tamer Özsu, and Walid G Aref. 2023. dLSM: An LSM-Based Index

for Memory Disaggregation. In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2835–2849.
[59] Ziwei Wang, Zheng Zhong, Jiarui Guo, Yuhan Wu, Haoyu Li, Tong Yang, Yaofeng Tu, Huanchen Zhang, and Bin Cui.

2023. Rencoder: A space-time efficient range filter with local encoder. In 2023 IEEE 39th International Conference on

Data Engineering (ICDE). IEEE, 2036–2049.
[60] Baoyue Yan, Xuntao Cheng, Bo Jiang, Shibin Chen, Canfang Shang, Jianying Wang, Gui Huang, Xinjun Yang, Wei Cao,

and Feifei Li. 2021. Revisiting the design of LSM-tree Based OLTP storage engine with persistent memory. Proceedings
of the VLDB Endowment 14, 10 (2021), 1872–1885.

[61] Ting Yao, Jiguang Wan, Ping Huang, Xubin He, Qingxin Gui, Fei Wu, and Changsheng Xie. 2017. A light-weight
compaction tree to reduce I/O amplification toward efficient key-value stores. In Proc. 33rd Int. Conf. Massive Storage

Syst. Technol.(MSST). 1–13.
[62] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael Kaminsky, Kimberly Keeton, and Andrew

Pavlo. 2018. SuRF: Practical range query filtering with fast succinct tries. In Proceedings of the 2018 International

Conference on Management of Data. 323–336.
[63] Teng Zhang, Jian Tan, Xin Cai, Jianying Wang, Feifei Li, and Jianling Sun. 2022. SA-LSM: optimize data layout for

LSM-tree based storage using survival analysis. Proceedings of the VLDB Endowment 15, 10 (2022), 2161–2174.
[64] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu, Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng He, Feifei

Li, Wei Cao, et al. 2020. FPGA-Accelerated Compactions for LSM-based Key-Value Store. In 18th USENIX Conference on

File and Storage Technologies (FAST 20). 225–237.
[65] Xin Zhang, Qizhong Mao, Ahmed Eldawy, Vagelis Hristidis, and Yihan Sun. 2022. Bi-directional Log-Structured Merge

Tree. In Proceedings of the 34th International Conference on Scientific and Statistical Database Management. 1–4.
[66] Yinan Zhang, Huiqi Hu, Xuan Zhou, Enlong Xie, Hongdi Ren, and Le Jin. 2023. PM-Blade: A Persistent Memory

Augmented LSM-tree Storage for Database. In 2023 IEEE 39th International Conference on Data Engineering (ICDE).
IEEE, 3363–3375.

[67] Yueming Zhang, Yongkun Li, Fan Guo, Cheng Li, and Yinlong Xu. 2018. ElasticBF: Fine-grained and Elastic Bloom
Filter Towards Efficient Read for LSM-tree-based KV Stores. In 10th USENIX Workshop on Hot Topics in Storage and File

Systems (HotStorage 18).
[68] Yijie Zhong, Zhirong Shen, Zixiang Yu, and Jiwu Shu. 2023. Redesigning High-Performance LSM-based Key-Value

Stores with Persistent CPU Caches. In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE,
1098–1111.

[69] Zichen Zhu, Ju Hyoung Mun, Aneesh Raman, and Manos Athanassoulis. 2021. Reducing bloom filter cpu overhead in
lsm-trees on modern storage devices. In Proceedings of the 17th International Workshop on Data Management on New

Hardware (DaMoN 2021). 1–10.

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 175. Publication date: June 2024.

https://doi.org/10.1145/3318464.3386134

	Abstract
	1 Introduction
	2 Background
	3 Moose: Three-Way Balanced LSM-tree Structure
	3.1 LSM-tree Generalization and Analysis
	3.2 Analyzing Each Operation
	3.3 New Inspirations on the Three-way Tradeoff
	3.4 DP Aided Three-way Tradeoff
	3.5 Theoretical Insights
	3.6 Smoose: Workload Aware Moose

	4 evaluation
	5 Related Work
	6 conclusion
	Acknowledgments
	References

