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ABSTRACT
Knowledge Graph (KG) Reasoning plays a vital role in various ap-

plications by predicting missing facts from existing knowledge.

Inductive KG reasoning approaches based on Graph Neural Net-

works (GNNs) have shown impressive performance, particularly

when reasoning with unseen entities and dynamic KGs. However,

such state-of-the-art KG reasoning approaches encounter efficiency

and scalability challenges on large-scale KGs due to the high com-

putational costs associated with subgraph extraction – a key com-

ponent in inductive KG reasoning. To address the computational

challenge, we introduce TIGER, an inductive GNN training frame-

work tailored for large-scale KG reasoning. TIGER employs a novel,

efficient streaming procedure that facilitates rapid subgraph slicing

and dynamic subgraph caching to minimize the cost of subgraph

extraction. The fundamental challenge in TIGER lies in the opti-

mal subgraph slicing problem, which we prove to be NP-hard. We

propose a novel two-stage algorithm SiGMa to solve the problem

practically. By decoupling the complicated problem into two classi-

cal ones, SiGMa achieves low computational complexity and high

slice reuse. We also propose four new benchmarks for robust eval-

uation of large-scale inductive KG reasoning, the biggest of which

performs on the Freebase KG (encompassing 86M entities, 285M

edges). Through comprehensive experiments on state-of-the-art

GNN-based KG reasoning models, we demonstrate that TIGER sig-

nificantly reduces the running time of subgraph extraction, achiev-

ing an average 3.7× speedup relative to the basic training procedure.
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1 INTRODUCTION
Knowledge Graph (KG) Reasoning aims to predict missing facts

by reasoning over domain knowledge and human commonsense
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in the form of head-relation-tail triples [20, 47], which has been

extensively studied and contributed to various applications such

as information retrieval, recommendation systems, drug discovery,

and financial trend prediction [3, 8, 10, 36, 57]. Given a query, i.e.,

two items of a triple (head entity, relation), the central KG reasoning

task is to predict the missing entity from the entity set of the KG.

For instance in Figure 1(a), the answer to the query (“Avatar 2”,

“directed_by”) would be “J. Cameron”. Conventional KG reasoning

relies on Knowledge Graph Embedding (KGE) [4, 42, 46], which

represents entities as trainable embedding vectors, but struggles

with the Inductive Reasoning task, i.e., handling updated triples

or new entities unseen during the training phase [43]. Recent in-

ductive KG reasoning models based on Graph Neural Networks

(GNNs) [17, 22, 26, 63], such as REDGNN [58] and NBFNet [66],

have surpassed the limitations of KGE methods. They achieve in-

ductive KG reasoning by utilizing local path evidence from KG

subgraphs [51, 59, 65].

The rapid advancement in Artificial Intelligence (AI), with new

applications like AI assistants, is escalating the need for compre-

hensive knowledge understanding to address ‘AI Hallucinations’

[12, 21]. This development has significantly heightened the demand

for inductive reasoning on large-scale Knowledge Graphs (KGs)

such as Freebase [2] and WikiData [45]. These KGs, often compris-

ing millions or even billions of triples, can expand to data sizes

of several terabytes [16]. Such a dramatic increase in size poses

not only a challenge to storage capabilities but also leads to GPU

memory overload and substantial computational costs, making the

training of GNN-based inductive reasoning models on large-scale

KGs economically and practically unfeasible [65]. To address this

scalability issue, an easily adopted approach is to manage data size

by extracting 𝐿-hop neighborhood KG subgraphs that correspond

to the sampled queries for each mini-batch training session. For

instance, as depicted in Figure 1(a), a 2-hop subgraph centered on

"Avatar" can be selectively fed into the GNN-based model, while the

complete KG data remains stored on a solid-state disk (SSD). How-

ever, while GNN training using KG subgraphs enhances scalability,

the repeated gathering of 𝐿-hop subgraphs introduces significant

efficiency challenges. As shown in Figures 1(b)(c), a 3-hop subgraph

in the FB5M dataset can encompass up to one million triples, with

subgraph extraction consuming up to 90% of training time across

three large-scale KG datasets. Consequently, optimizing the sub-

graph extraction process becomes essential for efficient GNN-based

inductive reasoning on large-scale KGs.

To the best of our knowledge, no existing GNN training system

specifically addresses the efficiency challenges of subgraph extrac-

tion in large-scale KGs. Existing large-scale KG system studies for

traditional KGE models mainly focus on negative sampling and
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Figure 1: (a) Example of knowledge graph reasoning, (b) Training time analysis for large-scale KGs under the basic pipeline and
techniques from AliGraph [62] and Ginex [35], and (c) 3-hop subgraph size (in triples) for central entities of varying degrees.

embedding storage, which are usually not applicable to GNN-based

inductive reasoning [23, 37, 61]. We contend that accelerating sub-

graph extraction in the large-scale inductive KG reasoning system

poses three significant challenges, rendering other system-level ac-

celeration techniques nearly ineffective. (1) Subgraph Data Com-
pleteness: The data integrity of the input subgraph is crucial, as it

determines the candidate targets and reasoning paths for a given

query. Any loss of information in the subgraph directly impacts the

model’s performance. Common strategies like node/edge sampling

[18] or graph partitioning [13] are unsuitable, as they would break

subgraph completeness, requiring additional data communication

to compensate for lost information. (2) Heterogeneous Graph
Structure: The data characteristics of KG subgraphs complicate

their calculations and storage. While recent GNN training systems,

like AliGraph [62] and Ginex [35], cache neighbor information for

central nodes. As verified in Figure 1(b), this strategy does not al-

leviate the efficiency pressure for frequent subgraph extraction. It

also struggles with handling the various relation types in the KG

and the overlapping of triples among KG subgraphs. (3) SSD Stor-
age and Access: Subgraph extraction involves extensive random

SSD access to load KG triple data, creating a significant efficiency

bottleneck. Although pre-storing all subgraphs for sequential ac-

cess might increase speed, it would also lead to substantial storage

demands. Furthermore, the random nature of mini-batch loading

hinders the reusability of subgraph storage.

To address these challenges, we present a newly designed sub-

graph extraction framework, TIGER, which supports the efficient

training of state-of-the-art GNN-based reasoningmodels on a single

machine, particularly for large-scale inductive KG datasets. Since

GNN training optimization is a multi-level, modular system engi-

neering process, TIGER focuses on the SSD storage and caching

parts to accelerate subgraph extraction under the constraints of

single-machine resources. As a preview, compared to the typical

subgraph-based training procedure, our TIGER achieves an average

3.7× speedup in training time without performance degradation

and easily scales to large-scale KGs. Specifically, TIGER has four

novel contributions:

First, to accelerate subgraph extractionwhilemaintaining subgraph

completeness in each mini-batch training, TIGER employs a novel

‘Slice&Cache’ procedure to precompute subgraphs in a streaming

way. Given a batch of queries, each subgraph is sliced into reusable

data slices which are stored on the SSDs for fast sequential reading.

To further reduce SSD access, high-priority slices are cached in the

main memory utilizing a dynamic cache mechanism. (Section 3)

Second, considering the heterogeneous graph structure of KG sub-

graphs, we propose a specific atom-based subgraph slicing problem,

in which each 1-hop subgraph is treated as an atom. By represent-

ing an 𝐿-hop subgraph as a combination of multiple atoms, triple

data stored on the SSDs can be excluded from the slicing algorithm

thereby reducing data communication and algorithmic complex-

ity. Regarding slicing quality and reusability, we prove that the

atom-based slicing problem is NP-hard. (Section 4.1)

Third, we design a novel two-stage subgraph slicing algorithm,

SiGMa, which first matches the atoms of a subgraph with existing

slices and then generates new reusable slices for the unmatched

atoms. Specifically, we map the SiGMa’s two stages, slice matching

and slice generating, to two classic problems of set covering and

bin packing. Leveraging existing heuristic solutions, we devise effi-

cient algorithmic approaches with approximate guarantees. SiGMa

optimizes slice redundancy and utilization while costing around

40% time and 75% storage space of competitors. (Section 4.2)

Finally, we propose new fundamental benchmarks for large-scale

inductive KG reasoning.We construct four new inductive KG datasets

from real-world KG data, including the most influential Freebase

containing more than 300 million triples. Each benchmark KG con-

tains more than two million entities, whose data scale is around

100× bigger than the previous ones. We conduct extensive experi-

ments on six state-of-the-art GNN-based reasoning models and lay

the groundwork for this new research problem. (Section 5)

2 BACKGROUND
2.1 GNN-based Inductive KG Reasoning
A Knowledge Graph G can be represented as a set of factual triples

{(𝑒ℎ, 𝑟 , 𝑒𝑡 ) |𝑒ℎ, 𝑒𝑡 ∈ E, 𝑟 ∈ R}, where the relation 𝑟 denotes the edge
type between the head entity 𝑒ℎ and the tail entity 𝑒𝑡 , and E, R are

the sets of entities and relations, respectively. Given a query (𝑞, 𝑟𝑞)
containing a query entity 𝑞 ∈ E and a query relation 𝑟𝑞 ∈ R, the
KG reasoning task aims to find the target entity 𝑒𝑎 ∈ E satisfying

that (𝑞, 𝑟𝑞, 𝑒𝑎) belongs to the knowledge graph G. The inductive
reasoning query for model evaluation is extracted from a new KG

G′ whose entity and relation sets satisfy R′ ⊆ R and E′ ∩ E = ∅.
It means the query entity and target entity are unseen during the

training phase. To achieve inductive KG reasoning, recent GNN-

based methods, such as NBFNet [66] and REDGNN [58], encode



each candidate entity by extracting local paths starting from the

query entity 𝑞 within the 𝐿-hop neighborhood subgraph G𝐿𝑞 cen-

tred on 𝑞, where G𝐿𝑞 is called the query subgraph in this paper.

Specifically, given the initialized message vector as e0
𝑞 |𝑞 , the basic

GNN formula in the ℓ-th iteration is:

eℓ
𝑡 |𝑞 = 𝑈𝑃𝐷𝐴𝑇𝐸

(︂
Wℓ𝐴𝐺𝐺

(︁
eℓ−1
𝑖 |𝑞 ⊗ rℓ | (𝑒𝑖 ,𝑟 ,𝑒𝑡 ) ∈G𝐿

𝑞

)︁
, eℓ−1

𝑡 |𝑞

)︂
, (1)

inwhich ⊗ is the relation-specific transformation operation,𝐴𝐺𝐺 (·)
and𝑈𝑃𝐷𝐴𝑇𝐸 (·) refer to the aggregation function and update func-

tion in GNNs, and Wℓ
is a weighting matrix in the ℓ-th layer. After

the 𝐿-layer GNNmessage passing, the entity embedding vector e𝐿
𝑒 |𝑞

is decoded to output the plausibility score of this candidate entity

𝑒 . A higher score means the triple (𝑞, 𝑟𝑞, 𝑒) is more likely to be true.

To facilitate subsequent discussions, we give the definition of query

subgraph and three basic properties of subgraph atom as follows:

Definition 1 (Query Subgraph). A query subgraph G𝐿𝑞 ⊆ G
is the set of triples whose head entity can be reached from the query
entity 𝑞 through at most 𝐿−1 edge-hops. DenoteN0

𝑞 = {𝑞} andN𝐿−1
𝑞

as the neighbor entities whose shortest distance from 𝑞 is not more
than 𝐿 − 1, the following holds:

∀(𝑒ℎ, 𝑟 , 𝑒𝑡 ) ∈ G, 𝑒ℎ ∈ N𝐿−1
𝑞 ⇒ (𝑒ℎ, 𝑟 , 𝑒𝑡 ) ∈ G𝐿𝑞 . (2)

The 1-hop subgraph G1𝑞 is referred to as a Subgraph Atom, which
encompasses all triples in which the head entity is 𝑞.

Example 1. Consider the sub-KG in Figure 1(a) as the 2-hop query
subgraph of “Avatar 2”, a subgraph atom centered on “Z.Saldana”
includes three triples: (“Z.Saldana”, “starring”, “Avatar”), (“Z.Saldana”,
“starring”, “Avatar 2”), (“Z.Saldana”, “occupation”, “Actress”).

Property 1. Any two atoms are edge-disjoint and no proper subset
of an atom solely appears within a query subgraph.

Property 2. Any query subgraph G𝐿𝑞 can be partitioned into
multiple atoms with the total quantity |N𝐿−1

𝑞 |.

Property 3. Assume two atoms of 𝑒1, 𝑒2 having the shortest dis-
tance 𝑘 , the count of their co-existing query subgraphs is at least
|N𝐿−𝑘

𝑒1
∪ N𝐿−𝑘

𝑒2
|.

Notably, the subgraph atom of an entity𝑞 only contains its outgo-

ing edges to ensure Property 1. If one atom contained bidirectional

triples, the same triple could be present in two atoms.

2.2 Subgraph Extraction for GNN Training
For large-scale KG datasets, the standard training pipeline of in-

ductive GNN models is illustrated in Figure 2. Given the queries

generated from KG triples in the training dataset, each mini-batch

loop samples a batch of training queries, extracts their query sub-

graphs, and conducts the model forward and backward calculations

[58, 65]. The efficiency bottleneck lies in extracting𝐿-hop subgraphs

repeatedly in the mini-batch loop. To explain, given the number

of training queries 𝑛𝑡𝑟 , the cumulative count of KG triple accesses

required for subgraph extraction across all training queries during

an𝑛𝑒𝑝 -epoch training process approximates O(𝑛𝑒𝑝 ·𝑛𝑡𝑟 ·𝑑𝐿), where
𝑑 represents the average entity degree. Take our FB5M dataset in

Table 2 as an example, training ten epochs requires more than 100

billion KG triple accesses.

SSD KG Triple
Data

Adjacency
List

GPU

GNN Model

Model
Computation

Mini-Batch Loop

Subgraph
Extraction

Query
Sampling

Host CPU

Training
Queries

Figure 2: Basic GNN training framework.

Figure 3: Illustrations of two subgraph extraction ways

Table 1: Time speedup of slice-based subgraph extraction.

Datasets ConceptNet Obgl_wikiKG2 FB5M
Avg. Atom Number 889.34 13587.89 9294.63

Avg. Total Time(s) 0.0408 0.3611 0.4048

Avg. Slice Number 15.27 113.73 158.2

Avg. Total Time(s) 0.0002 0.0013 0.0018

Time Speedup 177.37 267.85 227.08

Meanwhile, each subgraph extraction operation requires nu-

merous SSD access. The original triple data of large-scale KGs is

typically stored on SSDs as a |G| × 3 matrix, where each row con-

sisting of three integers representing the individual IDs of the head

entity, relation, and tail entity of a triple, respectively. To accelerate

graph loading, an adjacency matrix is stored in the compressed

sparse row (CSR) format as it allows fast access to in-neighbors

of each entity. Besides, an adjacency list for each entity is con-

structed to fast collect the triples of each subgraph atom via direct

addressing. Nevertheless, extracting one query subgraph still re-

quires O(N𝐿−1
𝑞 ) disk accesses when assuming each adjacency list

is contained within a disk page. Due to the power-law distribu-

tion of KG datasets, most atoms contain only a few dozen triples.

Consequently, the basic process of subgraph extraction illustrated

in Figure 3(a) necessitates massive SSD random access, which is

substantially slower than sequential access [28].

Our Motivations: The Slice&Cache Procedure. To enhance the

efficiency of GNN model training, we focus on the challenges in

subgraph extraction stemming from repetitive calculations and

slow SSD access. A straightforward solution might be pre-storing

all possible subgraphs on SSDs sequentially, but this would lead to

inefficient storage and retrieval due to the immense data volume of

subgraphs. To avoid this inefficiency, we introduce a novel proce-

dure, Slice&Cache, which segments the subgraph triples into multi-

ple reusable slices and partially caches them in the main memory.

This procedure, illustrated in Figure 3(b), retrieves a small number

of slices from both the SSDs and the slice cache when assembling a
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Figure 4: TIGER training pipeline overview.

batch of query subgraphs. The rationale behind Slice&Cache draws

from the observation that triples from closely connected atoms in

KG subgraphs are often loaded simultaneously. Preliminary results

in Table 1 demonstrate that loading subgraphs from SSDs in sliced

form—each slice containing no more than 2,048 triples—is over 177

times faster than retrieving subgraph atoms from adjacency lists.

This significant speedup can be attributed to the higher bandwidth

of sequential access compared to random access across both SSDs

and main memory, as noted in [38]. Consequently, organizing sub-

graph triples into sequentially stored slices not only streamlines

SSD reads but also enhances cache utilization, leading to accelerated

training processes for GNN models.

3 THE PROPOSED FRAMEWORK: TIGER
To implement the Slice&Cache procedure for highly efficient sub-

graph extraction, we design a novel training framework, TIGER,

tailored for large-scale inductive KG reasoning. We overview the

TIGER training pipeline in Section 3.1. The two core components

of TIGER, subgraph slicing and subgraph caching, are described in

Sections 3.2 and 3.3.

3.1 TIGER Training Pipeline Overview
Figure 4 illustrates the training pipeline of TIGER. Given the KG

triple data stored on the SSDs, TIGER initially undertakes Atom
Cache Construction, loading a portion of atom triples (1-hop sub-

graphs) into the main memory to accelerate the subsequent sub-

graph extraction. Following this, TIGER starts model training by

iterating the Super-batch Loop, which is specifically designed to pre-

compute input data of multiple batches before mini-batch training,

thus reducing repetitive calculations and facilitating the upcoming

cache mechanism. A super-batch loop starts with three precom-

putation stages: Query Sampling, Subgraph Slicing, and Subgraph
Caching, where all required subgraphs are reconstructed into uni-

formly sized slices and stored in either the Slice Cache or SSDs.

Subsequently, the super-batch loop trains multiple batches of sam-

pled queries through continuous Mini-batch Loops, leveraging the
precomputed slices to minimize subgraph extraction costs. As the

super-batch loops progress, the precomputation time decreases due

to the dwindling number of unsliced subgraphs. Notably, such sub-

graph precomputation ensures efficient training without altering

model calculations, thus there is no sacrifice for effectiveness.

Atom Cache Construction. The Atom Cache, established at the

start and unchanging in subsequent super-batch loops, aims to

reduce the cost of reading atoms (e.g. 1-hop query subgraphs) from

SSDs. It contains two cache structures within a predefined size:

one as a 1-D array for storing neighbor entity IDs and another

for atom triples of high-degree entities. This cache employs direct

addressing, recording each entity’s array index and data length to

achieve swift O(1) cache lookups.
Query Sampling. Given the hyperparameter 𝑠𝑢𝑝𝑒𝑟𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 de-

termining the number ofmini-batches, this stage samples all batches

of training queries together. Unlike the basic pipeline samples

within each mini-batch loop, TIGER preemptively identifies the spe-

cific subgraphs each batch will access prior to mini-batch training.

This foresight enables the implementation of an efficient caching

mechanism for subgraph extraction. Without altering the data sam-

pling strategy, such a centralized sampling procedure does not

affect model performance.

Subgraph Slicing. This stage is crucial for optimizing subgraph

extraction. It extracts unsliced subgraphs accelerated by the Atom

Cache, and segments each of them into uniformly sized slices. The

slicing results are recorded in a mapping dictionary which links

query entity IDs to their corresponding slice IDs. This arrangement

allows for the direct retrieval of sliced subgraphs from sequential

slice data, substantially reducing random SSD access. To enhance

the efficiency of subgraph slicing, we propose an innovative para-

digm called atom-level subgraph slicing. It significantly cuts down

time complexity and memory usage by converting subgraphs into

disjoint atoms for more efficient slicing. The comprehensive design

of this module is detailed in Section 3.2.

Subgraph Caching. Upon obtaining the slicing results, this stage

entails storing the newly generated slices on SSDs. An atom-based

slice structure is proposed effectively reducing SSD storage require-

ments by a factor of three. To decrease the frequency of SSD access,

a portion of slices are cached in the main memory, termed the Slice

Cache, and is systematically arranged in a 2-D array utilizing di-

rect addressing. To enhance the efficiency of slice data loading, a

powerful caching mechanism is implemented by precomputing the

next-access slices of each mini-batch to support the dynamic cache

update in the mini-batch training. The specifics of this process are

elaborated in Section 3.3.

Mini-batch Loop. In this stage, given a batch of queries, the as-

sociated slice IDs are retrieved from the slice mapping dictionary.

The corresponding slice data is first extracted from the Slice Cache

and then from the SSDs, which is used to construct the batch sub-

graph. After that, the Slice Cache is updated with the precomputed

changeset for this batch to enhance the cache hit ratio in subse-

quent mini-batch loops. Finally, TIGER transfers batch queries and

complete subgraphs into the GPU, where it performs the forward

and backward computations of the GNN-based model.

3.2 Subgraph Slicing Module
Subgraph slicing is designed to circumvent the need for repeated

subgraph extraction by segmenting query subgraphs into efficiently

loadable slices. Specifically, for a given query subgraph G𝐿𝑞 , sub-
graph slicing is to find a series of disjoint triple sets, termed slices

(S𝑞 = 𝑆1, 𝑆2, · · ·), whose union is equivalent to G𝐿𝑞 . Given a pre-

defined slice size ℎ, each slice 𝑆 ∈ S𝑞 is limited to containing at

most ℎ triples (|𝑆 | ⩽ ℎ), with any remaining space in the slice being

zero-filled when storing. A global dictionary maintains the associa-

tion between slices and query entities, mapping each query entity

ID 𝑞 to its corresponding slice IDs within S𝑞 . Consequently, for
queries previously processed through slicing, their subgraphs are



denoted as lists of slice IDs. This allows for direct loading of sub-

graph triples from these slices, eliminating the need for traditional

subgraph extraction methods.

Atom-level Subgraph Slicing. When processing an unsliced sub-

graph, a straightforward approach is retrieving all its triples from

SSDs and distributing them into slices whose complexity is contin-

gent upon the number of triples. We refine this process by slicing at

the atom level. According to Properties 1 and 2, a query subgraph

G𝐿𝑞 can be decomposed into a set of disjoint atoms {G1𝑒 |𝑒 ∈ N𝐿−1
𝑞 }.

The triples within each atom are regarded as a singular, inseparable

unit for efficient slicing and anℎ-length slice would encompass mul-

tiple complete atoms. For an atom exceeding the size ℎ, its triples

are jointly stored across multiple slices, thereby being excluded

from the slicing process.

Example 2. Consider the 3-hop subgraph centred on 𝑞 in Figure
5(a), its atom-based subgraph is a sequence of atoms in the form of
(entity ID, atom weight). The 1-hop subgraph atom 𝐴𝑞 contains five
triples whose head entity is 𝑞, thus the atom weight of 𝐴𝑞 is the triple
number 5.

Slicing on atom-based subgraphs offers a significant reduction in

time complexity and memory usage. The quantity of atoms is con-

siderably less than that of subgraph triples, leading to a markedly

reduced time complexity for slicing operations. Furthermore, atom-

level slicing necessitates only atom information, e.g. 𝐿-1 hops of

neighbors and atom weights, avoiding the need to load all subgraph

triples into the main memory. Additionally, the memory footprint

of both atom-based subgraph and slice data during calculations is

substantially smaller.

Two-stage Slicing Algorithm. A straightforward slicing method

is to partition triples or atoms into fixed-length slices without

considering their reuse, leading to each slice being uniquely as-

sociated with a single subgraph. It would result in increased SSD

storage pressure and inefficient access. TIGER tackles this issue

with a two-stage slicing algorithm SiGMa, which prioritizes the

reuse of existing slices before allocating new slices for unmatched

atoms. Specifically, SiGMa begins with a list of query entities and

existing slices. For each entity’s atom-based subgraph, SiGMa first

undergoes a Slice Matching stage, identifying existing slices that are
fully constituted by certain atoms from the subgraph. Subsequently,

the Slice Generating stage generates new slices for remaining un-

matched atoms. The outcome is a list of slice IDs corresponding

to this subgraph, which is then recorded in the global mapping

dictionary. And new slices built from the generating results will be

stored in SSDs.

Example 3. Regarding the atom-based subgraph of𝑞 in Figure 5(b),
two slices 𝑆1 and 𝑆2 in existing slices are matched first. Despite three
other slices also being composed of certain atoms, they overlap with 𝑆1
or 𝑆2 without higher slice capacity (e.g. |𝑆4 |=9<14=|𝑆1 |). Subsequently,
the remaining atoms are allocated to new slices 𝑆6 and 𝑆7, resulting
in the subgraph being represented by these four slices in total.

The primary objective of subgraph slicing, given a set of sub-

graphs, is to efficiently load all subgraph triples while minimizing

the number of slices accessed, thus reducing data communication

with SSDs. In Section 4, we will not only formally define the atom-

level subgraph slicing problem but also demonstrate its NP-hard

nature. This revelation underscores the significance of crafting

effective algorithms for both subgraph matching and generating.

We will delve into the theoretical analysis of the proposed SiGMa

algorithm in Section 4.1 and explore its algorithmic design in Sec-

tion 4.2, thereby providing a comprehensive understanding of its

functionality and efficiency.

3.3 Subgraph Caching Module
The Subgraph Caching Module is dedicated to both storing slices

on SSDs and managing the Slice Cache. Once subgraphs are sliced

in a super-batch, new slices comprising specific triple data are

encoded with the support of the Atom Cache and then stored on

SSDs for future use. To minimize SSD access and hasten subgraph

extraction, TIGER employs main memory caching for a proportion

of slices, called Slice Cache. The Slice Cache efficiently organizes the

equal-length slices in a straightforward 2-D array, utilizing direct

addressing similar to the Atom Cache. During mini-batch loops, a

slice is swiftly retrieved using its specific slice ID and subsequently

decoded back into the original triples.

Atom-based Slice Storage. To further compress storage space and

accelerate slice loading, we propose an atom-based slice storage

structure. In one slice, the stored triples are organized into multiple

atoms where all triples of one atom share the same head entity.

Therefore, we compress the redundant triple data by reconstructing

atom triples into a 1-D 𝑢𝑖𝑛𝑡64 array. We concatenate the common

head entity ID and the triple number of the atom to form the first

𝑢𝑖𝑛𝑡64 integer, and then concatenate the two IDs in each (𝑟, 𝑒𝑡 ) pair.
Moreover, all concatenated 𝑢𝑖𝑛𝑡64 integers are shifted one place to

the left. The vacated space serves as a signal spot: it is set to 1 for

the head ID line and to 0 otherwise.

Example 4. Consider storing the new slice 𝑆6 in Figure 5(c). Fo-
cusing on the atom associated with the entity ID 𝑓 , its first item is
concatenated by three parts (𝑓 , 3, 1), indicating the presence of three
triples headed by 𝑓 . The next three rows represent these triples, each
records one relation ID and one tail entity ID, marked by a 0 signal
spot. Consequently, the atom 𝑓 is encapsulated within the 1-D 𝑢𝑖𝑛𝑡64

array, comprised of four 𝑢𝑖𝑛𝑡64 integers.

This innovative slice storage, replacing three 𝑖𝑛𝑡64 integers with

a single 𝑢𝑖𝑛𝑡64 integer, effectively reduces the storage requirement

by a factor of three. For instance, consider a scenario with 10,000

slices and the slice size ℎ = 2048. In this case, the total storage

needed for the basic structure would be approximately 4.58 GB. In

contrast, the advanced atom-based slice structure would require

only about 1.53 GB.

Dynamic CachingMechanism. Tominimize SSD access, TIGER’s

Slice Cache is dynamically updatedwith eachmini-batch loop,main-

taining a consistently high hit ratio. The dynamic caching mech-

anism is inspired by the recent SSD-based GNN training system,

Ginex [35]. Ginex adopts Belady’s cache replacement algorithm [1],

which is provably optimal by evicting data with the highest reuse

distance at every timestep. Following Belady’s cache mechanism,

the Slice Cache prioritizes slices that would be accessed in the early

mini-batch loops of the current super-batch, and evicts those with

the longest wait time before needed.

The dynamic caching process in one super-batch is shown in

Algorithm 1. Specifically, in the Subgraph Caching stage, the slices



Figure 5: Graphical illustration of subgraph processing.

Algorithm 1: Dynamic Caching

Input :Query entities 𝑄 of one super-batch, slice mapping

dictionary𝑀 .

1 Get the list of slice IDs from𝑀 for each query entity 𝑞 in 𝑄 ;

2 Precompute the initializing slice IDs 𝑆𝑖𝑛𝑖𝑡 ;

3 Gather slices S𝑖𝑛𝑖𝑡 from SSDs corresponding to 𝑆𝑖𝑛𝑖𝑡 ;

4 Initialize Slice Cache: S𝑐𝑎 ← S𝑖𝑛𝑖𝑡 ;
5 Precompute the changeset 𝐶𝑏 of each mini-batch 𝑏;

6 foreach mini-batch 𝑏 of the super-batch do
7 Gather slices S𝑏 for the mini-batch query entities 𝑄𝑏 ;

8 Train the GNN model with 𝑄𝑏 and S𝑏 ;
9 Evict slices from Slice Cache: S′𝑐𝑎 ← Evict(S𝑐𝑎,𝐶𝑏 );

10 Gather inserted slices from S𝑏 : S𝑢𝑝 ← Gather(S𝑏 ,𝐶𝑏 );
11 Update Slice Cache: S𝑐𝑎 ← Update(S𝑢𝑝 ,S′𝑐𝑎,𝐶𝑏 );
12 Empty the Slice Cache;

utilized in the first few batches are prefetched as the initialization

of Slice Cache (in Lines 2-4). Then, given the slice IDs required

by each mini-batch, TIGER follows Ginex to precompute which

slices to insert into and evict from the Slice Cache (in Line 5). The

precomputation results, called changesets, will be utilized in the

Slice Cache Update stage at each mini-batch loop. When updating

the cache guided by the changeset (in Lines 9-11), slices in the

cache that are marked for eviction are replaced with slices from the

current batch that have been loaded into the main memory.

Unlike Ginex [35], which focuses on caching nodes’ feature vec-

tors, integrating the dynamic caching mechanism into TIGER intro-

duces three principal challenges for the subgraph slicing algorithm:

(1) Subgraph slicing, being more time-consuming than processing

feature vectors, requires further acceleration techniques to sustain

training efficiency. (2) The caching mechanism’s effect hinges on

the quality of subgraph slicing, as slices with greater reusability

would improve cache hit ratios. (3) This mechanism necessitates

that cached slices have a fixed length, similar to feature vectors,

demanding a balance between slice redundancy and utilization.

4 ATOM-LEVEL SUBGRAPH SLICING
4.1 Problem Formulation
To reduce the time complexity and memory footprint of the sub-

graph slicing process, we first convert the triple-level subgraph

slicing problem to the atom level. Ignoring the specific triple data,

we can represent an atom-based subgraph as 𝐺𝑞 = {(𝑒𝑎,𝑤𝑎) |𝑒𝑎 ∈

N𝐿−1
𝑞 ,𝑤𝑎 = |G1𝑒𝑎 |}. The subgraph size |𝐺𝑞 | =

∑︁
𝑎∈𝐺𝑞

𝑤𝑎 and 𝑤𝑎

refers to the atom weight (the number of atom triples). Formally,

the atom-level subgraph slicing problem is defined as follows:

Definition 2 (Atom-level Subgraph Slicing). Given a pre-
determined slice size ℎ and a collection of query entities 𝑄 , the cor-
responding atom-based subgraphs are G = {𝐺𝑞 |𝑞 ∈ 𝑄} and the
collection of atoms appearing in G are denoted as A = {𝑎 |𝑤𝑎 < ℎ}.
The atom-level subgraph slicing problem is to construct a collection of
slices S satisfying that: each slice 𝑆𝑖 ∈ S consists of multiple distinct
atoms in A and the total weight of atoms |𝑆𝑖 | =

∑︁
𝑎∈𝑆𝑖 𝑤𝑎 ⩽ ℎ; any

subgraph 𝐺𝑞 ∈ G can be composed by a set of non-overlapping slices
S𝑞 ⊆ S, i.e., 𝐺𝑞 =

⋃︁
S𝑞 .

Optimization Target. Unlike graph partitioning algorithms that

divide the entire graph into multiple disjoint parts, the stored slices

are allowed to overlap with the other, enabling the possibility of

being reused by various KG subgraphs. Given a collection of sub-

graphs G, the optimization of atom-level subgraph slicing aims

to load all subgraph triples by visiting as few slices as possible

thereby reducing SSD data communication. When the sizes of sub-

graphs and slices are given, the number of required slices is de-

termined by two aspects of slice quality: Slice Redundancy and

Slice Utilization. The lower slice redundancy is better, indicating

less zero-filling/redundant space in each slice. Meanwhile, reusing

more slices in multiple overlapping subgraphs can also decrease

the total required slices. Therefore, we can define the optimization

target, named Slicing Score, as follows:

𝑓 (G, S, ℎ) = |S |∑︁
𝐺𝑞 ∈G

⌈︁
|𝐺𝑞 |/ℎ

⌉︁ =

∑︁
𝐺𝑞 ∈G |S𝑞 |∑︁

𝐺𝑞 ∈G
⌈︁
|𝐺𝑞 |/ℎ

⌉︁
Slice Redundancy Rate 𝛿𝑅

× |S |∑︁
𝐺𝑞 ∈G |S𝑞 |

Slice Utilization Rate 𝛿𝑈

, (3)

where |G𝑞 | and |S𝑞 | denote the quantities of subgraph triples and

slices, respectively. The slicing score is the ratio between the num-

ber of distinct slices in S and the total number of the fewest slices

needed for each subgraph, which is derived from the original goal

of atom-level subgraph slicing. Interestingly, according to Equation

3, the slicing score can be decoupled into two helpful metrics: Slice

Redundancy Rate (𝛿𝑅 ) and Slice Utilization Rate (𝛿𝑈 ). The former

𝛿𝑅 compares the actual number of loaded slices to the minimum

required, where the lower 𝛿𝑅 means less redundant space in these

slices. While 𝛿𝑈 measures the ratio of distinct slices to the total

required, reflecting slice reuse frequency in these subgraphs. There-

fore, according to the definitions, a subgraph slicing is optimal if

the slice set S achieves the lowest slicing score, i.e., 𝛿𝑅 × 𝛿𝑈 .

Theorem 1. Minimizing 𝛿𝑅 ×𝛿𝑈 to obtain an optimal atom-based
subgraph slicing is NP-hard.



Proof. We establish the NP-hardness of our target problem,

atom-based subgraph slicing, by reducing the classical Bin Packing

problem to it. Given multiple items/atoms with different weights,

Bin Packing is to assign each atom to a bin of size ℎ such that the

total number of bins used is minimized. This Bin Packing problem

is equivalent to the special case of our target problem where we

are slicing only one query subgraph 𝐺𝑞 . In this case, the slice uti-

lization rate 𝛿𝑈 is fixed at 1 and the optimization target transforms

to minimizing the slice redundancy rate 𝛿𝑅 . If a polynomial-time

algorithm solves our problem, it implies one exists for the NP-hard

Bin Packing problem. Consequently, atom-based subgraph slicing

must also be NP-hard. □

Theorem 2. Given the subgraph set G and atom set A, the metric
𝛿𝑅 of a slicing result S has a lower bound:

𝛿𝑅 ⩾
⌈︂
(
∑︂

𝑎∈A𝑤𝑎)/ℎ
⌉︂ /︁
(𝛿𝑈 ·

∑︂
𝐺𝑞 ∈G

⌈︁
|𝐺𝑞 |/ℎ

⌉︁
) (4)

Proof. According to the definition of the slicing score, 𝛿𝑅 ×
𝛿𝑈 = 𝑓 (G, S, ℎ) = |S|/(∑︁𝐺𝑞 ∈G

⌈︁
|𝐺𝑞 |/ℎ

⌉︁
). Meanwhile, the total slice

number |S| ⩾ ⌈(∑︁𝑎∈A𝑤𝑎)/ℎ⌉. Because 𝛿𝑈 ⩽ 1 and the other terms

are constants, the lower bound holds. □

Challenges. According to the preceding analysis, the atom-based

subgraph slicing is presented as an NP-hard problem, incorporating

two optimization objectives, 𝛿𝑅 and 𝛿𝑈 . According to Theorem 2,

we know that the lower bound of the metric 𝛿𝑅 is increased by the

decline of 𝛿𝑈 . It indicates minimizing just one metric would not be

a valid solution. Take two extreme solutions as instances, treating

every ℎ triples as a slice would obtain the lowest redundancy rate

𝛿𝑅 but a relatively high utilization rate 𝛿𝑈 ; while treating each atom

as a distinct slice would get a low 𝛿𝑈 , but the 𝛿𝑅 score would be

extremely high. Therefore, when designing the slicing algorithm,

we balance the two metrics and target the lowest slicing score.

4.2 Subgraph Slicing Algorithm: SiGMa
Considering both slice redundancy and slice utilization, we de-

sign a novel two-stage algorithm SiGMa for atom-based subgraph

slicing. Within two stages, SiGMa first matches existing slices for

slice reuse and then assigns the unmatched atoms into multiple

slices. Moreover, we observe the complicated connections between

the slice quality and the functions for slice generating and match-

ing. The slice-generating process focuses on the construction of

each slice controlling the redundancy rate 𝛿𝑅 directly, while the

slice-matching process determines the reuse of existing slices (𝛿𝑈 ).

Meanwhile, the generated slice indirectly impacts how frequently

it can be reused and the slice matching can impact the final 𝛿𝑅 met-

ric by skipping the high-redundancy slices. Therefore, considering

both 𝛿𝑅 and 𝛿𝑈 metrics while maintaining efficiency, we design two

specific algorithms for slice generating and matching, respectively.

Slice Generating Algorithm. Slice generating aims to generate a

few ℎ-length slices S𝑔𝑒𝑛 whose union composes the input atom set

𝐺 ′𝑞 = {𝑎1, 𝑎2, · · · , 𝑎𝑚}(𝑚 = |𝐺 ′𝑞 |). These atoms come from the same

atom-based subgraph 𝐺𝑞 and the weight 𝑤𝑎 of each atom is not

more than ℎ (as described in Section 3.2). According to Theorem 2,

to prioritize minimizing 𝛿𝑅 while reducing 𝛿𝑈 , the payload of one

slice should be as close as possible to ℎ thereby minimizing the slice

amount |S𝑔𝑒𝑛 |. Minimizing |S𝑔𝑒𝑛 | solely is equal to the NP-Hard

Bin Packing problem [31], in which items of different sizes must be

packed into a minimum number of bins with a fixed capacity. Here,

we first discuss some feasible solutions to this classical problem:

• Naive Solution (Next-Fit Algorithm, NF): Filling each slice with

the atoms from 𝐺 ′𝑞 sequentially until reaching the maximum

capacity ℎ. The time complexity is O(𝑚).
• Greedy Solution (First-Fit Decreasing Algorithm, FFD): Iterating

over 𝐺 ′𝑞 in the decreasing order, and placing each atom in the

first slice that can accommodate it; if no such slice exists, creating

a new slice. The time complexity is O(𝑚 · log𝑚).
• Optimal Solution: More sophisticated methods like integer pro-

gramming can be used, but the time costs would be unaffordable.

Although NF and FFD algorithms can produce good solutions in

a reasonable timeframe, they do not consider the optimization of

the slice utilization rate 𝛿𝑈 . According to Properties 3, a clique in

which atoms are connected densely with others usually appears in

more subgraphs than a random combination of atoms. To this end,

we design a slice-generating algorithm that indirectly controls the

slice utilization by adjusting the atom processing order, as shown

in Algorithm 2. Specifically, different from the FFD algorithm uses

the decreasing order of atom weights, we visit the atom list with

the Postorder Depth-First Search thereby decreasing the distances

among atoms in a local window. Because the input atom list 𝐺 ′𝑞
is usually not a complete subgraph, starting from only one atom

may not cover the whole list. Therefore, we traverse the 𝑘-hop

neighbors of 𝑞 in 𝐺 ′𝑞 as multiple root nodes (Line 2). For each

neighbor atom 𝑢, the algorithm checks if 𝑢 is in 𝐺 ′𝑞 , pushing 𝑢

onto the atom stack 𝐿𝑠𝑡𝑎𝑐𝑘 (Lines 3-5). While 𝐿𝑠𝑡𝑎𝑐𝑘 is not empty, it

retrieves the top atom 𝑎. If 𝑎 is unvisited, mark it as visited, gather

its unvisited neighbors, sort by atomweights, and finally push them

onto the stack (Lines 6-11). If 𝑎 is visited, it is popped from 𝐿𝑠𝑡𝑎𝑐𝑘
and inserted into one slice in S𝑛𝑒𝑤 via the FFD algorithm (Lines

12-14). On Lines 15-16, after searching the whole branch of one

neighbor, the generated slices are filtered by the capacity threshold

𝑎𝑙𝑝ℎ𝑎 to ensure a low 𝛿𝑅 . The atoms in low-capacity slices would

be re-packed in the next iteration. Finally, on Line 17, the rest atoms

would be packed via the FFD algorithm.

Complexity Analysis: Based on the FFD algorithm, the proposed

slice-generating algorithm optimizes both slice capacity (for lower

𝛿𝑅 ) and atom distances (for lower 𝛿𝑈 ). Except for the Postorder

Depth-First Search having O(𝑚) complexity, the time complexity

of the rest algorithm is similar to that of FFD, i.e., O(𝑚 · log𝑚). In
the implementation, we can further reduce the time complexity and

neighbor extraction I/Os by pre-ordering the atoms when loading

each atom-based subgraph.

Slice Matching Algorithm. Slice matching aims to match an

atom-based subgraph 𝐺𝑞 with existing slices from the slice data S.
Specifically, the problem is to select a collection of disjoint slices

S𝑚𝑎𝑡 ⊆ S, each of which is a proper subset of 𝐺𝑞 , and maximize

the union of these slices. The above problem is a variant of the

classical NP-hard Set Cover problem [14], where one aims to select

the smallest number of subsets from a collection so that their union

equals the entire set. Differently, we require each selected slice to

be exactly matched and non-overlapping with others to minimize

the Slice Redundancy Rate (𝛿𝑅 ). While fuzzy matching can enhance



Algorithm 2: Slice Generating
Input :Atom list 𝐺 ′𝑞 = {(𝑒𝑎,𝑤𝑎)}, slice capacity ℎ, hop

number 𝑘 , capacity threshold 𝛼 .

Output :Generated slices S𝑔𝑒𝑛 .
1 Initialize the slice set S𝑑𝑓 𝑠 ;
2 foreach 𝑘-hop neighbor atom 𝑢 of 𝑞 do
3 if 𝑢 ∉ 𝐺 ′𝑞 then continue;
4 Initialize a collection S𝑛𝑒𝑤 and an atom stack 𝐿𝑠𝑡𝑎𝑐𝑘 ;

5 Push the atom 𝑢 to 𝐿𝑠𝑡𝑎𝑐𝑘 ;

6 while 𝐿𝑠𝑡𝑎𝑐𝑘 is not empty do
7 𝑎 ← top atom of 𝐿𝑠𝑡𝑎𝑐𝑘 ;

8 if 𝑎 is not visited then
9 Mark 𝑎 as visited;

10 Gather unvisited neighbor atoms𝑤 of 𝑎 in 𝐺 ′𝑞 ;
11 Push all𝑤 to 𝐿𝑠𝑡𝑎𝑐𝑘 sorted by weight;

12 else
13 𝑎 ← pop 𝐿𝑠𝑡𝑎𝑐𝑘 ;

14 Bin packing S𝑛𝑒𝑤 ← 𝐹𝐹𝐷 (S𝑛𝑒𝑤 , {𝑎});

15 S𝑓 𝑖𝑙𝑙 ← {𝑆𝑖 ∈ S𝑛𝑒𝑤 |𝑠𝑖𝑧𝑒 (𝑆𝑖 ) ⩾ 𝛼};
16 S𝑑𝑓 𝑠 ← S𝑑𝑓 𝑠 ∪ S𝑓 𝑖𝑙𝑙 , 𝐺 ′𝑞 ← 𝐺 ′𝑞 −

⋃︁
S𝑓 𝑖𝑙𝑙 ;

17 Bin packing the rest atoms: S𝑔𝑒𝑛 ← S𝑑𝑓 𝑠 ∪ 𝐹𝐹𝐷 (∅,𝐺 ′𝑞);

slice utilization, it also demands increased computation of atom

weights to adjust similarity and introduces additional redundant

triples. Here, we first discuss some feasible solutions.

• Naive Solution (Next-Fit Algorithm, NF): Matching slices from S
in sequential order; for each slice 𝑆 , adding 𝑆 to S𝑚𝑎𝑡 as long

as 𝑆 ⊆ 𝐺𝑞 , then updating 𝐺𝑞 as 𝐺𝑞 − 𝑆 . The time complexity is

O(𝑚𝑛) (𝑚 = |𝐺𝑞 |, 𝑛 = |S|).
• Greedy Solution (Greedy Algorithm, GRD) Iteratively selecting

the slice 𝑆 that contributes the maximum number of new atoms,

ensuring the slices S𝑚𝑎𝑡 chosen are mutually disjoint, and re-

peats this process until no further slices can be chosen. The time

complexity is O(𝑚𝑛2).
• Optimal Solution: This problem can be solved by integer program-

ming, but the huge slice amount results in prohibitive complexity.

The complexity of both NF and GRD algorithms is determined by

the slice amount𝑛(𝑛 ≫𝑚). For large-scale KGswith an exceedingly
high number of slices, we improve the slice-matching algorithm by

minimizing the number of slices required for matching. Our slice

matching algorithm contains two stages as shown in Algorithm 3.

Specifically, in the first stage on Lines 2-7, we gather the 𝑘-hop

neighbors 𝑁𝑘
𝑞 of query 𝑞 (Line 2) and collect the slices S𝑁 whose

query entity is in 𝑁𝑘
𝑞 (Line 3). These slices S𝑁 are then sorted

based on their historical utilization times (Line 4) and matched

preferentially on Lines 5-8. Because these ‘nearby’ slices are more

likely to be matched, the size of atom set𝐺 ′𝑞 would be significantly

decreased. Secondly, we match slices that contain at least one atom

in the rest 𝐺 ′𝑞 on Lines 9-16. Such that a large number of slices

that do not intersect with 𝐺 ′𝑞 are excluded. Following the GRD

algorithm, we sort the candidate slices by slice capacity on Line 11

thereby matching the slice having more atoms first on Lines 12-16.

In addition, to ensure the low redundancy rate 𝛿𝑅 in the S𝑚𝑎𝑡 , we

remove slices with a lower payload than the capacity threshold 𝛼 on

Lines 6 and 13. The ratio of slice matching |𝐺 ′𝑞 |/|𝐺𝑞 | is determined

by multiple factors including both atom list and slice data, but the

capacity of all matched slices can be guaranteed (⩾ 𝛼).

Complexity Analysis: Different from the NF algorithm with

O(𝑚𝑛) complexity, the complexity of Algorithm 3 is aroundO(𝑚𝑛′),
where 𝑛′ ≪ 𝑛 denotes the number of slices calculated in two stages.

The complexity of the additional sorting operation is independent

of𝑚 and 𝑛 thus the cost is negligible. Then, gathering S𝑎 on Line 11

is a O(1) operation because we construct a mapping dictionary to

record the slice IDs corresponding to each query entity. Removing

low payload slices is O(1) because we can record the capacity of

each slice in the slice data. In summary, the total complexity of the

proposed algorithm is much lower than that of FF and GRD.

4.3 SiGMa Approximation Guarantee.
According to the complexity analysis of two sub-algorithms, the

total time complexity of SiGMa for one query subgraph is around

O(𝑚 ·𝑚𝑎𝑥 (𝑛′, log𝑚)). Since each entity is only sliced once, the time

cost of SiGMa is affordable. We further discuss the approximation

guarantee of SiGMa. The SiGMa algorithm is designed to optimize

both slice redundancy (𝛿𝑅 ) and slice utilization (𝛿𝑈 ). Because 𝛿𝑈 is

difficult to measure, we focus on the approximation guarantee of

minimizing the 𝛿𝑅 metric.

Algorithm 3: Slice Matching

Input :Atom list 𝐺𝑞 = {(𝑒𝑎,𝑤𝑎)}, Slice data S, hop
number 𝑘 , capacity threshold 𝛼 .

Output :Matched slices S𝑚𝑎𝑡 , rest atom set 𝐺 ′𝑞
1 Initialize the empty set S𝑚𝑎𝑡 , 𝐺

′
𝑞 ← 𝐺𝑞 ;

2 Gather the 𝑘-hop neighbors 𝑁𝑘
𝑞 of 𝑞;

3 Gather the slices S𝑁 ⊂ S whose query entity is in 𝑁𝑘
𝑞 ;

4 Sort S𝑁 by the historical utilization times;

5 foreach slice 𝑆 in S𝑁 do
6 if 𝑠𝑖𝑧𝑒 (𝑆) ⩾ 𝛼 and 𝑆 ⊆ 𝐺 ′𝑞 then
7 𝐺 ′𝑞 ← 𝐺 ′𝑞 − 𝑆 ;
8 S𝑚𝑎𝑡 ← S𝑚𝑎𝑡 ∪ {𝑆};

9 foreach atom 𝑎 in 𝐺 ′𝑞 do
10 Gather the slices S𝑎 ⊂ S that containing 𝑎;
11 Sort S𝑎 by the capacity in decreasing order;

12 for each slice 𝑆 in S𝑎 do
13 if 𝑠𝑖𝑧𝑒 (𝑆) ⩾ 𝛼 and 𝑆 ⊆ 𝐺 ′𝑞 then
14 𝐺 ′𝑞 ← 𝐺 ′𝑞 − 𝑆 ;
15 S𝑚𝑎𝑡 ← S𝑚𝑎𝑡 ∪ {𝑆};
16 break;

Theorem 3. The slice capacity threshold 𝛼 ⩾ 0.9 guarantees
SiGMa outperforming the FFD algorithm when the slice amount
|S𝑚𝑎𝑡 | + |S𝑑𝑓 𝑠 | > 3.

Proof. Given a subgraph𝐺𝑞 , the output slice set of SiGMa algo-

rithm consists of three parts, S𝑚𝑎𝑡 by matching, S𝑑𝑓 𝑠 by generating



with DFS order, and the rest slices S𝑓 𝑓 𝑑 generated via the FFD

algorithm on Line 17 of Algorithm 2.

We first deduce the upper bound of 𝛿𝑅 and discuss the slice

amount in each part. The slice redundancy in the first two parts

is constrained by the minimum capacity threshold 𝛼 . While the

redundancy rate of the third part is determined by FFD, whose tight

approximation ratio is known as ( 11
9
OPT + 6

9
) from [11], where

OPT refers to the optimal value.

Assume the atom set𝐺1 is the atoms stored in S𝑚𝑎𝑡 and S𝑑𝑓 𝑠 , the
other atoms 𝐺2 = 𝐺𝑞 −𝐺1 are inputted into the final FFD process.

For one subgraph 𝐺𝑞 , we prove the upper bound of the 𝛿𝑅 metric

as follows:

𝛿𝑅 (𝐺𝑞 ) =
|S𝑞 |⌈︁
|𝐺𝑞 |/ℎ

⌉︁ =
|S𝑚𝑎𝑡 | + |S𝑑𝑓 𝑠 | + |S𝑓 𝑓 𝑑 |⌈︁

|𝐺𝑞 |/ℎ
⌉︁

⩽
⌈ |𝐺1 |/(𝛼ℎ) ⌉ + |S𝑓 𝑓 𝑑 |⌈︁

|𝐺𝑞 |/ℎ
⌉︁ ⩽

⌈ |𝐺1 |/(𝛼ℎ) ⌉ +
⌈︁
11

9
⌈ |𝐺2 |/ℎ⌉ + 6

9

⌉︁⌈︁
|𝐺𝑞 |/ℎ

⌉︁ (5)

Then, we discuss the value range of 𝛼 that guarantees SiGMa

outperforming FFD. The statement is true if and only if the following

inequalities hold:⌈︃
|𝐺1 |
𝛼ℎ

⌉︃
+
⌈︃
11

9

⌈︃
|𝐺2 |
ℎ

⌉︃
+ 6

9

⌉︃
<

⌈︃
11

9

⌈︃ |𝐺𝑞 |
ℎ

⌉︃
+ 6

9

⌉︃
(6)

Given 𝛽 = ⌈|𝐺1 |/ℎ⌉ and ⌈𝑎⌉ + ⌈𝑏⌉ ⩽ ⌈𝑎 + 𝑏⌉ + 2, we have:
𝛽

𝛼
<

⌈︃
11

9

𝛽 + 6

9

⌉︃
− 2⇒ 𝛼 >

9𝛽

11𝛽 − 3

(7)

Finally, according to numerical calculation, we prove that when

the slice number |S𝑚𝑎𝑡 | + |S𝑑𝑓 𝑠 | is more than three (𝛽 > 3), the 𝛿𝑅
metric of SiGMa is lower than that of FFD as long as 𝛼 ⩾ 0.9. □

In large-scale KGs, the slice amount for one query subgraph is

usually more than ten, as shown in Table 1. According to Theorem

3, a high capacity threshold 𝛼 ⩾ 0.9 can guarantee the performance

of SiGMa for minimizing slice redundancy.

5 EXPERIMENTS
5.1 Experimental Setup
Inductive KG Datasets. Current benchmarks for inductive KG

reasoning, typically sourced from small-scale KG datasets, consist

of two disjoint subgraphs, train graph and test graph, with only

thousands of entities and triples [43]. To assess our framework’s

efficiency and scalability, we create four new inductive benchmarks

from larger, real-world KG datasets: Ogbl-wikiKG2 [19], FB5M [5],

ConceptNet [41], and Freebase [2]. The Ogbl-wikiKG2 is derived

from Wikidata, while FB5M is a Freebase subset. Following the

small-scale benchmark work [43], we construct the test graph by

sampling a set of entities as central nodes and taking the union of

the 2-hop query subgraphs of these entities. To ensure the test graph
has enough relation types, we sample at most 𝑁𝑠 relation-specific

triples per relation type and take their head entities as the central

nodes. For the above four KGs, the 𝑁𝑠 values are [100, 100, 20, 5].

To address sparsity issues, we only maintain relation types with at

least ten triples in the original KG. To prevent exponential growth,

we impose a maximum degree limit of 10,000 for all entities. The

train graph comprises the remaining triples whose entities are not

in test-graph and relation exists in test graph. The statistics of these
inductive benchmarks are given in Table 2.

Table 2: Statistics of inductive KG datasets. OgblKG2 denotes
the Ogbl-wikiKG2 dataset, validation/test sets are comprised
of valid/test queries using triples in Test Graph as facts.

KG Dataset OgblKG2 FB5M ConceptNet Freebase

Origin

relations 535 7,523 50 14,851

entities 2,500,604 3,988,105 28,370,083 86,054,501

triples 17,137,181 17,872,174 34,074,917 338,669,200

Train

Graph

relations 457 3,935 50 8,665

entities 2,430,605 2,294,045 28,251,829 85,076,400

triples 10,095,634 5,436,199 32,392,485 281,933,370

epoch queries 30,891 44,211 9,665 70,496

Test

Graph

relations 457 3,935 50 8,665

entities 120,882 785,700 166,479 1,850,074

triples 391,351 1,482,923 217,555 2,975,287

valid queries 29,934 112,362 31,590 178,174

test queries 49,188 175,704 39,862 292,110

Models and Evaluation Metrics. We employ six recent GNN-

based models for inductive KG reasoning, including REDGNN [58],

NBFNet [66], AdaProp [59], A*Net [65], GraPE [51] and RUNGNN

[54]. By default, we set the hidden dimension to 32, the layer num-

ber 𝐿 to 3, and the batch size to 16. We train the six models by

minimizing the multi-class cross-entropy loss. Following the de-

fault settings of these models [58], we augment the triples in G
with reverse and identity relations. To evaluate the performance of

subgraph slicing algorithms, we utilize the slicing score and two

metrics, Slice Redundancy Rate (𝛿𝑅 ) and Slice Utilization Rate (𝛿𝑈 ),

defined in Equation 3. Besides, for the efficiency of the training

framework, we also measure the cost time of different stages, the

cache hit ratio, the total slice amount, and slice storage memory.

Comparison Baselines. We compare TIGER with three baselines:

Basic, Atom, and Glike. Basic refers to the basic training pipeline of

inductive GNN models as depicted in Figure 2. Atom records atom-

based subgraphs in memory and loads subgraph atoms accelerated

by Atom Cache. This baseline represents the general solution of

caching neighbor information in previous GNN training systems

[37, 62], and its bottleneck is the massive SSD random access. Fol-

lowing the ‘Slice&Cache’ procedure of TIGER, the Glike baseline
utilizes the dynamic caching mechanism in Ginex [35] for slice

caching, but it divides subgraph triples into equal-length slices se-

quentially without slice reuse, thereby the large volume of slices

would be its major bottleneck. As we focus on optimizing the sub-

graph extraction process, studies contributing to the other aspects

of GNN training are excluded in our experiments.

Implementation Details. For the default TIGER training system,

we set the super-batch size to 800, the slice size ℎ to 2048, the

minimum capacity threshold 𝛼 to 0.9, and the hop number 𝑘 in

SiGMa to 1. We will discuss the sensitivity of hyperparameters

in Section 5.6. For a fair efficiency comparison, we use a sampled

subset of factual triples from the train-graph as standard training

queries for all epochs, referred to as “epoch queries” in Table 2.

All experiments are performed on Intel Xeon Gold 6238R 26-core

CPU and NVIDIA RTX A5000 GPU. We utilize a 2TB PCIe SSD and

the total main memory is 64GB. The framework is implemented in

Python using the PyTorch framework.

5.2 Efficiency w.r.t. the three Baselines
We present the end-to-end running time for a single training epoch

of six GNN-based models in Figure 6. These models are trained

using both TIGER (Our) and three baselines. The total running time



Figure 6: Comparison of running time (s) for one training epoch on three large-scale KG datasets.

Figure 7: Ablation studies of the TIGER and five variants.
Training time (s) refers to the total time of subgraph extrac-
tion and model computing.

is subdivided into three components: the time spent on subgraph

slicing, subgraph extraction, and model computing. The slicing time

includes slice storage time and is only substantial during the initial

training epoch. In subsequent epochs training the same queries,

the model can directly extract subgraph slices. Thereby we observe

that TIGER without subgraph slicing significantly outshines the

Basic pipeline, registering a speedup ranging from 1.9× to 7.9×. As
subgraph slicing eliminates redundant extraction operations, the

time reduction would become more pronounced with an increase

in the number of training epochs.

The Atom baseline outpaces Basic due to the preloaded atom-

based subgraphs, but extracting substantial atoms via SSD random

access still consumes considerable time. The lower extraction time

of Glike and Our underlines the effectiveness of slice-based sub-

graph extraction due to more SSD sequential access. The subgraph

slicing time of TIGER is at least 1.5 times faster than that of the

second-best baseline, Glike. Moreover, due to the sequential slicing

in Glike, it incurs a significantly higher storage space requirement

for slicing data on SSDs, which will be discussed in Section 5.3.

In the comparison of the six GNN models, GraPE stands out for

its notable speedup, attributed to its efficient model computation

achieved through path pruning. Generally, the extent of speedup is

linked to the duration of GNN model computation. Utilizing path

pruning techniques, AdaProp and A*Net exhibit higher speedups in

TIGER than REDGNN and NBFNet, while RUNGNN, an enhanced

version of REDGNN, emerges as the slowest one.

5.3 Efficiency due to Individual Parts
To evaluate the system design of TIGER and two core processes:

SiGMa slicing algorithm and subgraph caching mechanism, we

have implemented five types of variants and conducted a series of

ablation studies training the REDGNN model. Specifically, regard-

ing the slicing process, we implemented three variants of SiGMa.

Direct refers to dividing subgraph triples into equal-length slices

sequentially without slice reuse. In contrast,Naive andGreedy apply
the classical algorithms mentioned in Section 4 for slice generation

and matching. For the caching process, we implemented a Static
slice cache, which is initialized like the Slice Cache in TIGER (Up-
date) but does not update during mini-batch loops. The related

experimental results are reported in Figure 7.

Our solution in TIGER, SiGMa+Update, outperforms other base-

lines in all four aspects: training time, slicing time, slice storage

space, and the cache hit ratio. We further discuss three key compo-

nents in TIGER by comparing these baselines: (1) Slice utilization:
The two variants using Direct train faster than two classical slicing

algorithms, but the simplistic slicing strategy without slice reuse

generates a large number of independent slices, leading to con-

siderable slice storage and low cache hits. (2) Algorithm perfor-
mance: The Naive and Greedy variants utilize classical algorithms

for subgraph slicing and achieve a higher cache hit ratio than Direct.
However, their slicing time is longer than SiGMa’s due to higher

complexity, and they also have a lower cache hit ratio compared to

SiGMa. (3) Caching updates: The cache hit ratio of Static caching
is lower than that of Update. Hence, the two variants using static

slice cache take a longer training time, which indicates the necessity

of dynamic cache replacement.

5.4 Performance of Slicing Algorithms
We compare the subgraph slicing performance of different matching

and generating algorithms on three datasets in Table 3, where

GRD+NF denotes using the Greedy slice-matching algorithm and

the Next-Fit slice-generating algorithm, and SiGMa +SiGMa denotes



Table 3: Performance comparison of slicing algorithms.
ConceptNet Cost Time Slice Amount 𝛿𝑅↓ 𝛿𝑈 ↓ Score↓
NF+NF 133s (×2.50) 46692 (×1.24) 1.19 0.86 1.02

NF+FFD 186s (×3.50) 43739 (×1.17) 1.11 0.86 0.95

NF+SiGMa 128s (×2.41) 36715 (×0.98) 2.12 0.55 1.18

GRD+NF 133s (×2.50) 46631 (×1.24) 1.18 0.86 1.02

GRD+FFD 188s (×3.53) 43402 (×1.16) 1.11 0.85 0.94

GRD+SiGMa 123s (×2.30) 36816 (×0.98) 1.30 0.65 0.84

SiGMa+NF 54s (×1.02) 47103 (×1.25) 1.12 0.90 1.01

SiGMa+FFD 70s (×1.31) 43675 (×1.16) 1.09 0.86 0.94

SiGMa+SiGMa 53s (×1.00) 37542 (×1.00) 1.17 0.71 0.83
ObglKG2 Cost Time Slice Amount 𝛿𝑅↓ 𝛿𝑈 ↓ Score↓
NF+NF 66s (×2.14) 11076 (×1.80) 1.18 0.28 0.33

NF+FFD 83s (×2.70) 10408 (×1.69) 1.16 0.27 0.31

NF+SiGMa 46s (×1.51) 5899 (×0.96) 1.64 0.13 0.22

GRD+NF 95s (×3.09) 11427 (×1.86) 1.18 0.29 0.34

GRD+FFD 121s (×3.94) 10263 (×1.67) 1.16 0.26 0.30

GRD+SiGMa 93s (×3.04) 6061 (×0.99) 1.24 0.15 0.19

SiGMa+NF 40s (×1.32) 11554 (×1.88) 1.13 0.30 0.34

SiGMa+FFD 47s (×1.53) 11023 (×1.79) 1.12 0.29 0.33

SiGMa+SiGMa 31s (×1.00) 6146 (×1.00) 1.16 0.16 0.18
FB5M Cost Time Slice Amount 𝛿𝑅↓ 𝛿𝑈 ↓ Score↓
NF+NF 148s (×4.84) 16675 (×1.39) 1.18 0.52 0.62

NF+FFD 59s (×1.92) 14827 (×1.24) 1.14 0.49 0.55

NF+SiGMa 44s (×1.44) 11887 (×0.99) 2.14 0.35 0.75

GRD+NF 40s (×1.30) 16606 (×1.38) 1.18 0.52 0.62

GRD+FFD 62s (×2.03) 14579 (×1.22) 1.14 0.48 0.54

GRD+SiGMa 49s (×1.61) 11855 (×0.99) 1.31 0.37 0.49

SiGMa+NF 26s (×0.84) 17657 (×1.47) 1.14 0.56 0.64

SiGMa+FFD 186s (×6.05) 14931 (×1.24) 1.11 0.49 0.54

SiGMa+SiGMa 31s (×1.00) 11993 (×1.00) 1.17 0.39 0.45

our solution with two proposed algorithms. After conducting a

super-batch loop with 3,200 queries, we collect the performance

metrics including the cost time of the slicing process, the total slice

number, two slice quality metrics, and the slicing score 𝛿𝑅 × 𝛿𝑈 .

From experimental results, we observe that SiGMa +SiGMa achieves
the best quality score with around 40% of the cost time and 75% of

the slice amount on average. NF+SiGMa obtains the lowest 𝛿𝑈 and

a lower slice amount but gets the highest 𝛿𝑅 metric because the

Next-Fit algorithm cannot avoid high-redundancy slices. SiGMa
+FFD gets the lowest 𝛿𝑅 but the other three metrics are weak, which

indicates minimizing a single metric is not enough. Comparing

three slice-generating algorithms solely, SiGMa gets the best 𝛿𝑈
but the highest 𝛿𝑅 . After combining with the SiGMa slice-matching

algorithm, the two metrics are balanced thereby achieving the best

quality score.

5.5 Scalability Studies
In Figure 8, we present a scalability studywith varying-sized datasets

generated from large-scale KGs. Additional experimental results

can be found in our Technical Report [52]. For each KG, we generate

eight datasets with different amounts of entities and queries, and

compare the training time of REDGNN with the Basic baseline and
TIGER for 1,000 queries. We observe a significant increase in the

time required for a single training epoch of the Basic framework

when applied to larger-scale datasets. Conversely, the stable per-

formance exhibited by TIGER underscores its superior scalability.

Besides, in Figure 9, we report the training curves of GraPE [51]

on the largest Freebase dataset over 50 training epochs with 4000

mini-batches per epoch. Figure 9(a) presents the changes in the

cost time and the total slice amount per epoch. The results indicate

a rapid increase in slice count initially and a stabilizing reduction

in epoch time cost due to faster subgraph loading from accumu-

lated slices, showcasing TIGER’s training efficiency through the

Slice&Cache procedure. Figure 9(b) presents the training loss curve

Figure 8: Scalability studies on various-scale KG datasets.

Figure 9: Training curves on the Freebase dataset.

Figure 10: Slicing time and storage space w.r.t. slice sizes

and the MRR metric, demonstrating the effectiveness of TIGER for

training inductive KG reasoning models.

5.6 Sensitivity Studies
We conduct sensitivity studies using the REDGNNmodel with vary-

ing three hyperparameters of TIGER that may affect performance.

Slice Size: In Figure 10, we assess the impact of varying slice sizes

(ℎ) on the performance of TIGER. As the slice size increases, the

subgraph slicing time reduces. This is because a larger slice can

accommodate more triples, thereby reducing the slice operations

in TIGER. On the contrary, larger slice sizes do result in expanded

slice storage space, as they lead to more redundant space within

slices and lower levels of slice reuse. Therefore, the selection of

the slice size is a balancing act that should take into account both

the desire to accelerate slicing time and the constraints imposed by

storage space limitations.

Minimum Capacity: The minimum capacity threshold 𝛼 ∈ (0, 1]
directly determines the slice redundancy of SiGMa. As shown in Fig-

ure 11, a higher minimum capacity leads to a smaller slice amount

and better slicing score, which is fitting with Equation 7. The in-

flection point of the curve occurs at around 0.9 because the slice

utilization would be hindered when the minimum capacity is too

high. Therefore, to balance the slice utilization and slice redundancy,

we set the minimum capacity 𝛼 to 0.9 by default.

Slice Cache Size: The size of the slice cache crucially affects the

number of slices that can be stored in the main memory for sub-

graph loading, influencing the efficiency of the input gather stage

during mini-batch processing. Our analysis, depicted in Figure 12,

demonstrates that on three KG datasets, both the runtime for input

gathering decreases and cache hit rates increase with larger slice

cache sizes. Additionally, since input gathering time encompasses

both slice loading and subgraph construction, the impact of cache

hits on reducing loading time diminishes beyond a 60% hit rate,

with subgraph construction times prevailing.



Figure 11: Slice amount and slice score w.r.t. the threshold 𝛼 .

Figure 12: Slice loading time and hit ratio w.r.t. cache sizes.

6 RELATEDWORK
6.1 GNN-based Knowledge Graph Reasoning
Traditional embedding-based KG reasoning methods [48, 49, 53]

learn continuous embedding vectors for each entity and relation,

such as TransE [4], DistMult [55], RotatE [42]. Earlier GNN-based

methods, R-GCN [40] and CompGCN [44], encode entity-specific

embeddings by combining the aggregated message from neighbors

with relation-specific parameters [50]. To handle unseen entities

for inductive KG reasoning, NeuralLP [56] and DRUM [39] encode

entities by aggregating the features along all the paths that reach

the candidate entity from the query entity. Recent studies concen-

trate on subgraph-based inductive KG reasoning. MorsE [7] learns

transferable meta-knowledge in entity-independent modules to

produce embeddings for unseen entities. INDIGO [27] maps the

existing KG and candidate triples to a node-annotated graph for

pair-wise encoding. GraIL [43] extracts an enclosing subgraph for

each candidate triple and train relational GNNs independent of any

specific entities. However, encoding triple-dependent subgraphs

still suffer from high computational complexity. Current state-of-

the-art GNN-based inductive methods, represented by REDGNN

[58] and NBFNet [66], follow a progressive GNN message-passing

paradigm from the source node to multi-hop neighbor entities layer

by layer. RUNGNN [54] utilizes a fusion gate unit tailored to query-

related contexts for modeling the sequential relation composition.

AdaProp [59] and A*Net [65] utilize attention mechanisms to select

top K edges (or nodes) in each GNN iteration. GraPE [51] introduces

an entropy-guided graph percolation procedure to maintain the

shortest paths while eliminating redundant paths. Although those

recent models are more efficient, they rely on the initial extraction

of a complete subgraph from large-scale KGs. TIGER distinguishes

itself from prior research by presenting a general framework aimed

at efficient subgraph extraction, rather than just another standalone

reasoning model. It extends support to various leading GNN-based

reasoning models, enabling their efficient training on large-scale

KGs while maintaining their reasoning performance.

6.2 Large-scale KGE/GNN Training System
To address the efficiency and scalability challenges with large

graphs, there are some well-engineered systems for accelerating

KGE training, such as DGL-KE [61], HET-KG [9], and SMORE

[37]. However, these graph embedding systems mainly focus on

distributed parallelism and embedding storage, which cannot be

directly used for large-scale inductive KG reasoning due to the

more complex nature of the GNN models [13, 24, 29, 34, 64]. No-

tably, many scalable frameworks work on large-scale GNN training,

but they do not specifically address the issue of subgraph extrac-

tion [6, 15, 25, 32, 33]. NeuGraph [30] harmoniously combines

graph computation optimizations with aspects like data partition-

ing, scheduling, and parallelism, within dataflow-oriented deep

learning frameworks. AliGraph [62] refines sampling operators for

distributed GNN training, and minimizes network communication

by caching nodes on local systems. DistDGL [60], a distributed GNN

training framework, distributes the graph and its related vector data

among machines. Despite their efficiencies, the graph sampling and

partitioning algorithms tend to obstruct subgraph completeness.

Therefore, additional data communication becomes unavoidable

to compile the entire subgraph information. To address the sub-

graph extraction issue, some recent GNN training systems, like

AliGraph [62] and Ginex [35], cache the neighbor information for a

few central nodes, but cannot workwell when dealing with frequent

extraction of large subgraphs. In contrast, our work designs sub-

graph slicing algorithms and utilizes slice-level caching to optimize

this process, for demands of loading entire subgraph data.

7 CONCLUSION
We proposed TIGER, a novel inductive KG reasoning framework

with improved efficiency and scalability. To accelerate subgraph

extraction in each mini-batch loop, TIGER employs a newly de-

signed Slice&Cache procedure in which subgraph triples are sliced

to enhance SSD sequential access and cached in memory via a

dynamic caching mechanism. An atom-based subgraph slicing al-

gorithm SiGMa with approximate guarantee is proposed to balance

slice redundancy and utilization while achieving low computational

complexity. Our experimental results on four large-scale inductive

datasets demonstrated that TIGER achieves average 3.7× faster

training time than the basic training procedure on six state-of-the-

art GNN-based reasoning models.

8 LIMITATION
There are further optimization opportunities of the TIGER frame-

work: (1) Optimizing Scope: TIGER focuses exclusively on opti-

mizing the subgraph extraction phase, without further optimizing

other phases of the training pipeline, such as the acceleration of

GNN calculations. (2) Application Scope: TIGER is designed for

a series of the latest GNN-based KG inductive reasoning models,

rather than all GNN-based models or previous inductive models.

Although the slicing techniques in TIGER would be beneficial, load-

ing graph data for these models may face unique challenges not

covered by TIGER. The future work includes using multiple GPUs

for distributed parallelism and extending to the other graph tasks.
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