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Graphs Are

Transportation Networks

Images downloaded from the Internet.

—verywhere

Tag Networks

Human Brain Networks
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Graph Research in Recent Years

@



Subgraph Extraction — Why

A sub-graph is a part
of the original graph

|~ Effective exploration on large graphs

@ |dentify important structures

\g . . . . .
# Easier analysis and visualisation



Subgraph Research in Recent Years




Subgraph

—xtraction is Widely Adopted

W Knowledge € Advertisement
Discovery Recommendation
Knowledge Graph

E-commerce

: o Drug Discovery &
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ML for Subgraph Extraction — Why

Limited Flexibility

 Predefined schemes are o
rigid when applied to

N/
varying scenarios ><‘> /
N

O—}O COMMUNITY SEARCH

O%O COMMUNITY DETECTION

k-core



ML for Subgraph Extraction — Why

Limited Efficiency
 NP-hardness results in

expensive overhead of @
algorithmic solutions Q
(s \\ ____________________
A O o
C®> MAXIMUM COMMON SUBGRAPH @
 Gis) () G2 =

@ SUBGRAPH ISOMORPHISM COUNTING A Search Tree



Common Graph ML Pipeline
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Common Graph ML Approaches

GNN: Graph Neural Network

* |[teratively aggregates vertex neighbour information by
learnable weights to learn representation

Vertex Representation

Layer 1 o i
Aggregation [IITTTTT] Weights
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Common Graph ML Approaches

GCL: Graph Contrastive Learning

* A type of semi-supervised learning that generates and
learns from similar and dissimilar graph variants

Transformation 1 -
. R e
L L
— e Graph Variant 1
[

Transformation 2

Graph Variant 2

—I. % ‘ Representation 1

Neural
Network

——

Representation 2



Common Graph ML Approaches

RL: Reinforcement Learning

* An agent interacts with the graph environment to learn to
maximise the reward over a course of actions

Learning-base
Algorithms

Agent

Action

[ Environment ]4

e "
s oo
Y, o
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COMMUNITY SEARCH

CS: COMMUNITY SEARCH
e Variant of COMMUNITY DETECTION

* Deduce a subgraph H that

« Contains a given query vertex v (or
a set of query vertices)

» Satisfies the cohesiveness and
connectivity constraints

Community H

Query Vertex



CS: The Applications

* Graph: social network

Yo o2
f

* Edge: friend connection T’

 Vertex: user

* Query: given user

» Task: Users tend to make friends | kﬁ
| /
=)

within a same community. How Qo
to search for a community that ‘
contains a particular user?




CS: The Applications

Knowledge Base
Graph: knowledge graph

Task: discovery new
connections in an area

protein 1

protein 2

" conformational
change

Protein Interaction

Vertex: protein | Edge: interaction

Task: discover functional ties
between proteins

E-commerce

Graph: user community

Task: ad recommendation from
other community members



Classical Metrics

k-core A maximal connected subgraph H such
[KDD'10; SIGMOD'14; VLDB'16; VLDB'21] that deg(v) > k for each v € H
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Classical Metrics

k-core

k-truss
[SIGMOD’14; VLDB’15; VLDB’17; ICDE’21]

A maximal connected subgraph H such
that every edge e € E(H) belongs to at
least k — 2 triangles in H
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Classical Metrics

k-core A connected subgraph H such that H is a
complete graph of order k
k-truss
. //’ i 1 i \\\
k-clique K | k.
[SIGMOD’13; TKDE’17] { - 6 N\ )
L2 3/ 4-clique

/




Classical Metrics

k-core A connected subgraph H such that H
remains connected if less than k edges
k-truss are removed

k-clique

k-edge-connected component
[SIGMOD’15; CIKM’16]




Classical Metrics

k-cc?re | | | Deterministic methods that apply
[KDD’10; SIGMOD’14; VLDB’16; VLDB’21] on attributed graphs

k-truss
[SIGMOD’14; VLDB’15; VLDB’17; ICDE’21]

[T
k-C"que attl\rli(k))(tjjfes
[SIGMOD’13; TKDE’17]

[T
k-edge-connected component
[SIGMOD’15; CIKM’16]
ACQ ATC Z T
[VLDB’16] [VLDB'17]




Classical Metrics

k-core
[KDD’10; SIGMOD’14; VLDB’16; VLDB’21]

k-truss
[SIGMOD’14; VLDB’15; VLDB’17; ICDE’21]

k-clique
[SIGMOD’13; TKDE’17]

k-edge-connected component
[SIGMOD’15; CIKM’16]

ACQ ATC
[VLDB’16] [VLDB'17]

@ Lack of flexibility

Predefined patterns are rigid when
applied to varying scenarios



Recent Learning Framework

[ Classical Method J [ Learning Method ]
Accurate Definition @ Soft Information
Metrics such as k-core p IS In @’s community

“Searching” the @ @ “Learning” the
community community model



Recent Learning Framework

ICS-GNN [VLDB’21]

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive community search via graph neural network. PVLDB 2021.

* Yield high-quality communities with interactive labeling
* No predefined pattern needed

QD/AQD-GNN [VLDB'22]

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.

* Model the attribute relations
* Process structure and attribute simultaneously

COCLEP [ICDE’23]

LiL, Luo S, ZhaoY, Shan C, Qin L, Wang Z. COCLEP: Contrastive Learning-based Semi-Supervised Community Search. ICDE 2023.

» Utilise graph contrastive learning
* Reduce the amount of training labels



|CS-GNN

Input query vertex

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive
community search via graph neural network. PVLDB 2021.



|CS-GNN

Input query vertex

Candidate Subgraph » Partial edge enhancement strategy
Construction » Locate useful vertices

Positive vertex

Subgraph (d) Subgraph

Query vertex

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive Non-positive vertex

community search via graph neural network. PVLDB 2021.



|CS-GNN

Input query vertex

Candidate Subgraph
Construction

GNN Training
and Inference

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive
community search via graph neural network. PVLDB 2021.

« Partial edge enhancement strategy
» Locate useful vertices

* Output model that predicts the
probabilities of nodes belonging to the
community



|ICS-GNN
T

Input query vertex

Candidate Subgraph
Construction

GNN Training
and Inference

Community Discovery

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive
community search via graph neural network. PVLDB 2021.

Partial edge enhancement strategy
Locate useful vertices

Output model that predicts the
probabilities of nodes belonging to the
community

Find community with maximum GNN
prediction score



|CS-GNN
T

Input query vertex

Candidate Subgraph
Construction

GNN Training
and Inference

/

Community Discovery

Update labelled vertices

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive
community search via graph neural network. PVLDB 2021.

Partial edge enhancement strategy
Locate useful vertices

Output model that predicts the
probabilities of nodes belonging to the
community

Find community with maximum GNN
prediction score



QD/AQD-GNN

'GNN Model

Input construction Input construction

Input query &2 Input query

Update model Output result

Predict labels Discover community

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community
search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.



QD/ACQD-GNN

@

Input

O

GNN

O

Output

Vertex Attribute Graph Structure Query Vertex

Qe
! i | ! !

Graph Encoder Query Encoder

N\

% Feature Fusion

'

¢ Output Representation

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community
search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.



QD/AQ
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Input
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GNN
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Output

Vertex Attribute

D-GNN

Graph Structure
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Attribute Encoder
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¢ Output Representation

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community
search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.




D)

COCL

How to reduce the demand of training labels?
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CS: Summary

ICS-GNN

* Interactively explore and refine the community
» Trains GNN model for each query

QD/AQD-GNN

» QD-GNN: two-branch model that encodes information from both queries and graphs
« AQD-GNN: Extend by fusing attributes into the model

COCLEP

* Focus on reducing the label demands by using GCL
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COMMUNITY DETECTION

CD: CoMMUNITY DETECTION

 Partition a graph into a set of
communities

« A community is a subgraph
that satisfy cohesiveness and
connectivity constraints

« Communities can be either
disjoint or overlapping

Disjoint Communities



CD: The Applications

* Graph: social network
* Vertex: user
* Edge: friend connection

 Task: How to detect communities
containing similar users and close
connections?

Family
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Friend Suggestion

Graph: social network

Task: suggest friendship in
the same community

CD: The Applications

Biological systems

Graph: protein Interaction

Task: identify functional groups
without prior knowledge

Fraud Detection

Graph: transaction network

Task: identify unusual patterns
of potential fraud occurrences



Classical Methods

Partition A

@ Graph Partition Q@
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Classical Framework

Q Graph Partition

BN
Q Optimisation —
— ﬁ
Q Hierarchical Clustering

Graph Q Spectral Clustering

Communities

Input Detection Output



GNN CD Framework

(T~ T oo 1
I I
I I
I I
I I
— | l
I I
: (._‘.‘ :
Graph : : I
| Flexible Embeddings :
s | Effective Models |
# I I
More : : Communities
Data | I
I I
| J l _____________ J | J | J
Input Detection Output

Su, X, et al. (2022). A Comprehensive Survey on Community Detection with Deep
Learning. |[EEE Transactions on Neural Networks and Learning Systems.



GNN CD Framework

—_ @ Classification -
g ™

@ Optimisation —/
Graph —> —>

Y ' “ @ Clustering

VRN RV
| — SPEN AR @ Generative N

Communities

Attribute
Input GNN Detection Output

Su, X, et al. (2022). A Comprehensive Survey on Community Detection with Deep
Learning. |[EEE Transactions on Neural Networks and Learning Systems.



LGNN

@ GNN: Line GNN

Graph G

&\%1& s ~a

Line.graph L(G)

« Simultaneous on graph and line graph
 Incorporate non-backtracking operator
* Represent edge adjacency information

Chen, Z., Li, X., & Bruna, J. (2019). Supervised Community Detection with Line Graph Neural
Networks. 7th International Conference on Learning Representations. ICLR 2019.

Q Detection: Classification

| - Cm .
] 5|
] B
[
o - . o -
| | N | [
LITTTTT]
| |
Node Multi-class/ Multi-label/
representation Disjoint Overlap

« Conventional GNN classification task
» Cross-entropy loss
* Require labelled data



CommDGil

@ GNN: Deep Graph Infomax

=

= .
7 4R
Contrastive ” -

\E_

Joint Optimisation

[TTTTTT]
Graph MI

« Maximise graph mutual information

« Contrastive method of negative samples

* Unsupervised Ml objective

Zhang, T., et al. (2020). CommDGI: Community Detection Oriented Deep Graph Infomax. Proceedings of
the 29th ACM International Conference on Information & Knowledge Management, 1843-1852.

LITTTTT
Comm Ml

[ITTTTTT]
Modularity

Q Detection: Joint Optimisation

¢ omm

Soft K-means

 Differentiable K-means clustering

« Soft K-means on representation

* Optimise community Ml and modularity



CD: Summary

 Learning-based methods such as GNNs improve the CD by more
flexible model designs and data processing

* The GNN for CD framework usually includes a GNN representation
module and a detection module

LGNN CommDGl
Paradigm Supervised Unsupervised
Community Disjoint/Overlap Disjoint
GNN Line GNN Deep Graph Infomax

Detection Classification Joint Optimisation
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(GRAPH ISOMORPHISM

GRAPH ISOMORPHISM (non-labeled):

Given two graphs G,=(V,, E,;) and G,=(V,, E,), there exists a bijection
f:V;,— V,such that:

edge uv €E;, & edge fu)f(v) €E,

1 Bijection: A B
(1) =4
/(2) =B
: - w-c
/ \ f(4) =D
4 3 D C

G, v/ isomorphic G,



(GRAPH ISOMORPHISM

GRAPH ISOMORPHISM (labeled):

Given two graphs G,=(V,;, E,, L;) and G,=(V,, E,, L,), there exists a
bijection f: V, — V,, such that:

1) Edge: uv €E, < edge f(u)f(v) EE,
2) Label: L;(v) = Ly(f(v))

v/ isomorphic X not isomorphic



Max COMMON SUBGRAPH

MCS: MAXx COMMON SUBGRAPH (labeled, node-induced):

Given two graphs G,=(V,, E,, L,) and G,=(V,, E,, L), find the largest sets
V,')cV,and V,'CV,, there exists a bijection f: V,' — V,', such that:

1) u,v€eV,,edgeuv €E, & edge flu)f(v) €E,
2) v eV, vertex label L,(v) = L,(f(v))

Bijection:

1 LA B E F
f1) =4 | :
) f2) =B | |
) =c |
4/ \3 f(4) =D (D o G

e - - - e - o = -



MCS: The Applications

« Graph: molecule -
3

 Vertex: atom

* Edge: chemical bond
@® Largest

 Task: Molecules that have similar @® Smaller

partial structures are expected to
have similar drug efficacy. How to
find the maximum common partial
structures in two molecules?

Yasuharu Okamoto. 2020. Finding a Maximum Common Subgraph from Molecular Structural Formulas through
the Maximum Clique Approach Combined with the Ising Model. ACS Omega 5 (22), 13064-13068.



MCS: The Applications

JWH-122
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Molecule Search

Graph: molecule graph DB

Task: find molecules in DB
similar to query graph

N-COOH-MAM-220

NtCreateDirectoryObject(OUT DirectoryHandle -> 1,
-, IN ObjectAttributes -> A);
NtCreateFile(OUT FileHandle -> 2, ...,
IN ObjectAttributes -> B,........... );
NtCreateFile(OUT FileHandle -> 3, ...,
IN ObjectAttributes -> C,........... );
NtCreateSection(OUT SectionHandle -> 4, ...,
IN ObjectAttributes->D, ....,
IN FileHandle -> 2);

Software Analysis

Vertex: kernel object | Edge: call

Task: discover specific malware
behaviours in software

Facial Recognition

Vertex: landmark in image

Task: compare similarity of
given image to DB



Conventional Solution:

Branch and

Candidate Vertices
Connectivity
Gy
degree 3 3 3 3
G; 0 0
G| ®@0OOP»O
degree 3 4:.5,3 3 2 2
G,

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for
Maximum Common Subgraph Problems. In 26th IJCAI. 712-719.

Bound

Bound

Potential Max Size
> Current Max Size



Conventional Solution: Branch and Bound

Candidate Vertices Branch G,’ G’
Connectivity Max degree
Gy
degree 3 3 3
G(® @ @
@ © 4 > 1
G  @®OD® | ¥ G
v Continue
G degree 3 4 3 3 2 2
F
G»

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for
Maximum Common Subgraph Problems. In 26th IJCAI. 712-719.



Conventional Solution:

Candidate Vertices

Connectivity

G, 1) /(2] (4
G, A B D E F G
degree 3.4.,3 3 2 2

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for
Maximum Common Subgraph Problems. In 26th [JCAI. 712-719.

Branch and

Sound

G,’ Bound

Potential Max Size
> Current Max Size



Conventional Solution:

Branch and

Candidate Vertices Branch G,’ G’
Connectivity Max degree
Gy
degree 3 3
G| @@
2—@ B C 4 > 2
G|\® ® ®| F
v Continue
G degree 3 3 3 2 2
F
G»

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for
Maximum Common Subgraph Problems. In 26th IJCAI. 712-719.



Conventional Solution:

Candidate Vertices

Connectivity
degree 3 38
G1 1 4
G, A D (E F G
degree 3 3 3 2 2

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for
Maximum Common Subgraph Problems. In 26th [JCAI. 712-719.

Branch and

Sound

Gy’ G,’ Bound
Potential Max Size
> Current Max Size
2 3 B C



Conventional Solution:

Branch and

22 o

Candidate Vertices Branch G,’
Connectivity Max degree
Gy
degree 3
G 4
Go D E F G
G degree 3 3 2 2
F
G»

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for
Maximum Common Subgraph Problems. In 26th IJCAI. 712-719.

Vv Continue



Conventional Solution:

Sranch and Bound

Candidate Vertices
i Connectivity
G
D degree 3
G +
B G» D/’ ® F G
G degree 3 3 2 2
F E
Go

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for
Maximum Common Subgraph Problems. In 26th IJCAI. 712-719.

Bound

Potential Max Size
> Current Max Size



Conventional Solution:

Branch and Bound

Candidate Vertices Branch G,’ G’
Connectivity Max degree
Gy
degree
Gy
‘ Current Max Size =4
G», E F G
G degree 3 2 2 v current best
F E
G

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for
Maximum Common Subgraph Problems. In 26th IJCAI. 712-719.



MCS Search Framework

McSplit Branch and Bound:

V[ Algorithm }
Branching:
GC‘fgegt, Select vertex pair
1 2 O
[ G1 & GZ J‘ ;
N/
Reinforcement Learning: hewristic rule
k[ Agent }
Action

[ Environment J(




McSplit+RL

RL alongside BnB Search:

P[ McSplit Alg }
k[ Agent ] >
State: Action:
Current Subgraph Best Branching Branching

{ Env: G1 &Gg J<

Design

Reach search tree leaf as early as possible
)

Minimise the size of the search space

Vs

McSplit

~

McSplit+RL

Y. Liu, C. M. Li, H. Jiang, and K. He. 2020. A Learning Based Branch and Bound for Maximum Common Subgraph

Related Problems. Proceedings of the AAAI Conference on Artificial Intelligence 34, 03 (2020), 2392-2399.

Action Design

Vertex pair with largest degree

Vertex pair with best RL reward



GLSearch

End-to-end RL BnB Search:

t[ Agent }
State: Action:
Current Subgraph Max Subgraph BnB Search
) GNN
Env: G1 & Gg J<
Design Action Design
find the max subgraph GNN learning the current state
learn to achieve best reward Decide search order & select vertex pair

Y. Bai, D. Xu, Y. Sun, and W. Wang. 2020. GLSearch: Maximum Common
Subgraph Detection via Learning to Search. In ICML. 588-598.



MCS: Summary

* The MCS problem is NP-hard. Conventional algorithms are based
on Branch and Bound search under heuristic rules

* The search can be powered by Reinforcement Learning: design
reward (learning goal) and action (one step of search)

* RL can improve the search by reaching solutions faster

Model Reward Action
McSplit+RL  Optimise BnB search  Select vertex of best reward

GLSearch Find max subgraph Perform BnB search
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SUBGRAPH ISOMORPHISM COUNTING

SIC: SUBGRAPH ISOMORPHISM COUNTING (labeled, heterogeneous):

Given a query graph G,=(V,, E, L, C,) and a corpus graph G.=(V,, E.,
L. C,), return the number of subgraphs in G.such that those
subgraphs are isomorphic to G,




SIC: The Applications

» Corpus Graph: road network

* Query Graph: connectivity patterns
* Vertex: intersections

* Edge: road segments

» Task: What is the frequency of
certain connectivity patterns in a
road network?

G Shen, et al. 2022. Motif discovery based traffic pattern mining in
attributed road networks. Knowledge-Based Systems 250.
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SIC: The Applications
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Protein Structure DBMS Bug Detection Pattern Discovery
Graph: protein interaction Graph: DBMS schema tables Graph: inter-firm network
Task: count frequency of certain Task: find redundant queries in Task: identify and count certain
interaction patterns in DB the schema graph connection patterns



SIC: The Challenge

« Exact SIC problem is NP-hard, resulting in exponential complexity

Brute force Ullmann
search (1976)

VEF2
(2007)

Corpus Nodes Size

Avg Degree
Query Nodes Size

Ribeiro, P., Paredes, P., Silva, M. E. P., Aparicio, D., & Silva, F. (2022). A Survey on Subgraph Counting: Concepts,

Algorithms, and Applications to Network Motifs and Graphlets. ACM Computing Surveys, 54(2), 1-36.



Conventional Solution: Tree Search

Search Tree Gq Ge
@ State 4 A X inconsistent!

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs. PAMI 26, 10 (2004), 1367-1372.
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Conventional Solution: Tree Search

Search Tree Gq G
@ State 2
Gq
() (&) State 5
(50 (s) State 6 '
G

v isomorphic

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs. PAMI 26, 10 (2004), 1367-1372.




Question-Answering Framework

The SIC Problem:

Input / ‘ ‘ l — Output C=1
N

Query Graph Corpus Graph Answer of query

The Question-Answering Problem:

11 [T T 7T 7T T 7]
Input — Output C=1

Query Data Answer of query



Question-Answering Framework

SIC Problem under QA Framework:

Input Representation Output
I I
/ N\ _/
Query Graph _ Query Representation
Representation C=1
Model Regression Answer

Model

T L

Corpus Graph Data Representation




DIAMNet

What are effective representation and regression models? GIN + DIAM

Input Representation Models Regression Model
I | I | I |

Query Graph - Query Representation

0 |

DIAM
Corpus Graph GIN Data Representation O (T'(nc+ng))
’7Training lteration

Answer

Linear Complexity:

X. Liu, H. Pan, M. He, Y.u Song, X. Jiang, and L. Shang. 2020.
Neural Subgraph Isomorphism Counting. In SIGKDD. 1959-1969.



ALSS

How to apply RDBMS techniques? Sketch |earning + Active Learning

Input Representation Models Regression Model
I | I | I |

~ A

Query Graph Substructures

GIN Self-Attn

> —90
TN Substructure Sketch Answer
[ [ T
[T

ProNE | I
[ Active Learning ]

Corpus Graph Label Embedding

K. Zhao, J. X. Yu, H. Zhang, Q. Li, and Y. Rong. 2021. A Learned
Sketch for Subgraph Counting. In SIGMOD. 2142-2155.



NeurSC

How to apply learning-based techniques? Inter-Graph + Adversarial Training

Input Representation Models Regression Model
| I |

A' —V Query Representation
Query Graph %@
C=1

Inter—Graph Mapping =" WEst Answer
GAT Inter-Graph Representation
o
% T
@@ @ W [Adversarial Training]
Corpus Graph Subgraph

Subgraph Representation

H. Wang, R. Hu, Y. Zhang, L. Qin, W. Wang, and W. Zhang. 2022. Neural
Subgraph Counting with Wasserstein Estimator. In SIGMOD. 160-175.



SIC: Summary
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ne SIC problem is NP-hard. Conventional enumeration-based
gorithm is limited by the graph size

ne Question-Answering Framework enables ML algorithms:

representation (graph to embedding) & regression (estimate count)

ML approaches output favourable estimation with linear complexity

Model Representation Regression
DIAMNet GIN Attention
ALSS Sketch learning Active learning

NeurSC Intra- & inter-graph Adversarial training
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MAXIMUM COMMON SUBGRAPH C@} SUBGRAPH ISOMORPHISM COUNTING

Conclusion & Future Directions Reynold Cheng, 10 min
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Summary: ML for Subgraph

Subgraph Problem Paradigm Algorithm Advance Method
® GNN @ © ICS-GNN [VLDB, 2021]
® GNN @ @ QD-GNN [VLDB, 2022]
COMMUNITY SEARCH _
® GNN @ © CGNP [arxiv, 2022]
() GNN @ 06X COCLEP [ICDE, 2023]
® GNN @) LGNN [ICLR, 2019]
d GNN @ X MRFasGCN [AAAI, 2019]
O GNN © X NOCD [DLG, 2019]
O GNN © AGC [IUCAI, 2019]
COMMUNITY DETECTION O GNN © AGE [KDD, 2020]
@) GNN, k-means @ CommDGil [CIKM, 2020]
O GNN @ DAEGC [IJCAI, 2019]
O GNN © SDCN [WWW, 2020]
O GNN @ O2MAC [WWW, 2020]

@ Supervised @ Semi-supervised O Unsupervised [@ Reinforcement @ Effectiveness @ Efficiency 3:@ Scalability



Summary: ML for Subgraph

Subgraph Problem Paradigm Algorithm Advance Method
9] Search + RL ©) McSplit+RL [AAAI, 2020]
M’S*’J;z":';’f” 0 © GNN, Search + RL © GLSearch [ICML, 2020]
O GNN @ (&  NeuralMCS [preprint, 2019]
D GNN @ X DIAMNet [SIGKDD, 2020]
D GNN + Active Learning O X ALSS [SIGMOD, 2021]
SUBGRAPH ISOMORPHISM C GNN + Adversarial Learning (& X NeurSC [SIGMOD, 2022]
COUNTING O GNN ©), LRP [NIPS, 2020]
® GNN © RNP-GNN [arxiv, 2021]
® GNN © DMPNN [AAAI, 2022]
D Active Learning ©) ActiveMatch [ICBD, 2021]
5] GNN + RL ©@ © RL-QVO [arxiv, 2022]
SUBGRAPH MATCHING .
® GNN © & NeuroMatch [arxiv, 2020]
® GNN © DMPNN [AAAI, 2022]

@ Supervised @ Semi-supervised O Unsupervised [@ Reinforcement @ Effectiveness @ Efficiency 3:@ Scalability



Summary: Focus of Approaches
7 / & © R0 D

Subgraph Problem Approach Effectiveness Efficiency Scalability Flexibility

Non-ML
COMMUNITY SEARCH
ML
Non-ML
COMMUNITY DETECTION
ML
MAxXIMUM COMMON Non-ML
SUBGRAPH ML

SUBGRAPH ISOMORPHISM Non-ML
COUNTING ML



Summary: Pros and Cons of ML Approaches
7 D © &

Subgraph Problem Flexibility Efficiency Training Data Learning Cost

O—}D COMMUNITY SEARCH

O%@ COMMUNITY DETECTION
MAxXIMUM COMMON
SUBGRAPH

SUBGRAPH ISOMORPHISM
COUNTING

w

©
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Future Directions

Enumeration, Optimization

Supervised

Regression, Classification c

Explore More Models for Subgraph Problems

]

___ Semi-Supervised
Contrastive, Adversarial

Self-Supervised

Generative, Active, Transfer

Unsupervised
Embedding, Clustering




Future Directions

Employ hybrid models of ML and non-ML approaches

Non-ML Approach ML Approach

© Free-of-training © High Flexibility

© Easy-explanation w © Better efficiency

© Mature strategy © Model variety



Future Directions

—xtend to other graph problems
DENSEST SUBGRAPH Conventional: Network Flow

KClist++ [VLDB’20]: Sample & Search

[ J
a & P B. Sun, et al. 2020. KClist++: a simple algorithm for finding k-clique densest
& ® S subgraphs in large graphs. Proc. VLDB Endow. 13, 10, 1628-1640
- - o
[ J
s & ° Ma et al [SIGMOD’22]: C P i
- a aetal] ]: Convex Programming
R C. Ma, et al. 2022. A Convex-Programming Approach for Efficient

Directed Densest Subgraph Discovery. In SIGMOD'22, 845-859.



Future Directions

—xtend to other graph problems
BIPARTITE SUBGRAPH Conventional: BnB Search

BCList++ [VLDB’22]: Backtrack & Prune

J. Yang, Y. Peng, and W. Zhang. (p,q)-biclique Counting and Enumeration
® ® @ ® ® for Large Sparse Bipartite Graphs. PVLDB, 15(2): 141-153, 2022.

- & & & & FastBB [SIGMOD’23]: Symmetric Branching

K. Yu and C. Long. 2023. Maximum k-Biplex Search on Bipartite Graphs:
A Symmetric-BK Branching Approach. Proc. ACM Manag. Data.
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