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ABSTRACT
Graph contrastive learning is a representative self-supervised graph

learning that has demonstrated excellent performance in learning

node representations. Despite the extensive studies on graph con-

trastive learning models, most existing models are tailored to static

graphs, hindering their application to real-world graphs which

are often dynamically evolving. Directly applying these models to

dynamic graphs brings in severe efficiency issues in repetitively

updating the learned embeddings. To address this challenge, we

propose IDOL, a novel contrastive learning framework for dynamic

graph representation learning. IDOL conducts the graph propaga-

tion process based on a specially designed Personalized PageRank

algorithm which can capture the topological changes incrementally.

This effectively eliminates heavy recomputation while maintain-

ing high learning quality. Our another main design is a topology-

monitorable sampling strategy which lays the foundation of graph

contrastive learning. We further show that the design in IDOL

achieves a desired performance guarantee. Our experimental re-

sults on multiple dynamic graphs show that IDOL outperforms the

strongest baselines on node classification tasks in various perfor-

mance metrics.

CCS CONCEPTS
• Information systems→Web mining; • Theory of computa-
tion→ Dynamic graph algorithms.
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1 INTRODUCTION
Graph representation learning has gained significant attention with

the burgeoning of graph data across various applications, such as

social networks [24, 28], online transactions [10, 23], recommen-

dation systems [21, 77] and time-series traffic forecasting [16, 61].

Given the vast presence of unlabeled graph data, self-supervised

learning on graphs has surged in popularity, which fosters the

success of graph contrastive learning acting as a representative

self-learning methodology [25, 29, 47, 48, 65]. By maximizing the

similarity among positive samples and dissimilarity among nega-

tive samples, graph contrastive learning has demonstrated excellent

performance in pretraining graph neural networks (GNNs) without

manual labeling, therebymarkedly boosting themodel performance

in the downstream tasks [39, 52].

Many real-world graphs are intrinsically dynamic, characterized

by the frequent updates of nodes, edges, and attributes [76]. For

example, Pinterest [74] and Tencent [26] use the graph structure to

measure the real-time proximity among users, where each user is a

node and the interaction between users is represented by an edge.

The graph data can be updated thousands of times per second due to

the extensive user base. In such dynamic scenarios, existing research

on graph contrastive learning, originally designed for static graphs,

becomes largely inapplicable [44, 69, 75], because the pretrained

node representations lack the adaptability to accommodate new

topological changes, leading to a decline in effectiveness.

Limitations of Existing Methods. Recent studies [3, 34, 56]
start to explore graph contrastive learning approaches consider-

ing temporal dynamics. They segment the spatial structure of an

evolving graph into multiple snapshots given a time window, which

is called the discrete-time dynamic graph (DTDG). Unfortunately,

there are two significant limitations of this category of approaches:

(i) First, these models still lack efficiency, particularly when applied

to large-scale graphs, since the node embeddings have to be regener-

ated via the GNN encoder (e.g., GCN [30], TGAT [63]) when updates

occur. (ii) Second, the general positive/negative sampling strategy

based on graph augmentation is not tailored to the dynamic graphs

and has been proven insufficient for dynamic graph contrastive

learning [13, 27, 54, 67]. For example, one recent method [56] as-

sumes that the evolution of a graph unfolds smoothly and thus

directly crafts positive and negative samples from the historical

graphs with short and long timespans. Nonetheless, this sampling

strategy exhibits limited effectiveness because it falls short in ob-

serving the topological changes and has the potential to erroneously

classify stationary nodes as negative samples or evolving nodes as
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positive samples, which goes against the intuition of contrastive

objectives.

We contend that the aforementioned issues can be alleviated

by the topology-monitorable capacity, i.e., taking full advantage

of topological changes in dynamic graphs, which is overlooked by

existing contrastive learning studies based on DTDG. Such a design

effectively addresses the limitations mentioned earlier. Firstly, by

continuously monitoring the topological structure, we can iden-

tify evolving nodes and subsequently perform local updates on

their embeddings, eliminating the need for repetitive and global

calculations. Secondly, by quantifying the extent of these changes,

we can use this measure to inform and refine our sampling strate-

gies. Therefore, to endow graph contrastive learning with the

topology-monitorable capacity, we first employ the paradigm of

continuous-time dynamic graphs (CTDG) [43], which are repre-

sented as a series of temporal edges with continuous dynamics

and can exhibit more evolving locality than DTDG [34]. Then, in-

spired by recent GNN simplification works based on Personalized

PageRank (PPR) [8, 31, 36], we propose to measure the topological

changes of dynamic graphs in both graph propagation and pairwise

sampling processes with efficient PPR-based algorithms.

Contributions. Based on this insight, we propose IDOL
1
, a pi-

oneering approach for node representation learning in continuous-

time dynamic graphs (CTDG). IDOL aims to improve the efficiency

of graph contrastive learning in a dynamic scenario with a paradigm

of incremental update. For this purpose, we suggest to adopt an

efficient graph propagation method based on Personalized PageR-

ank (PPR) [9], which enables the incremental embedding update

based on historical embeddings and eliminates repetitive embed-

ding recomputation. In our evaluation, IDOL can achieve up to 3x

faster pretraining compared with baselines. Moreover, we design a

topology-monitorable sampling strategy in self-supervised learning

of dynamic graphs, avoiding repetitive computation for augmen-

tation as well as relaxing the evolving assumption of graphs in

recent literature [6, 56, 64]. From a model design perspective, we

are pioneers in implementing the decoupled architecture (e.g., de-
coupling propagation and training) within the realm of contrastive

learning. Our approach conveys a crucial insight: the effectiveness

in downstream tasks is closely linked to the performance achieved

in our decoupled model design of contrastive learning. This could

potentially spark further innovative investigations within the graph

community. Our contributions are summarized as follows:

•We identify the limitations of existing contrastive learning

methods in the dynamic graph scenario and introduce IDOL as

an innovative self-supervised learning solution, crafted to excel in

continuous-time dynamic graphs (CTDG).

•We adopt a PPR-based technique for incremental embedding

update and present a topology-monitorable sampling method to

generate contrastive pairs, thereby significantly boosting training

efficiency and effectively enhancing the embedding quality in con-

trastive learning, respectively.

• To the best of our knowledge, IDOL is a pioneering algorithm

that applies decouple propagation and training in contrastive learn-

ing, and in the meanwhile attaining a desired complexity (see Table

1). Within this innovative framework, we theoretically establish a

1Incremental Dynamic Graph Cotrastive Learning

performance guarantee for downstream tasks by linking the con-

trastive loss with the downstream task loss.

•We conduct comprehensive experiments across various real

datasets to demonstrate the efficiency and effectiveness of our ap-

proach in dynamic graph scenarios. Remarkably, IDOL outperforms

in prediction accuracy for dynamic node classification, while en-

tailing notably less pretraining time.

2 PRELIMINARY AND RELATEDWORKS
In this section, we begin by introducing the problem definition of

this work and review the basic graph contrastive learning frame-

work and Personalized PageRank (PPR) algorithms related to our

design. We list the frequently used notations in Appendix A.1. We

leave the detailed proofs of this paper in our technique report [12].

2.1 Problem Definition
Let G = (V, E,𝑿 ) be a directed and attributed graph, whereV =

{𝑣1, 𝑣2, ..., 𝑣𝑛} is the set of 𝑛 nodes, E = V×V is the set of𝑚 edges

and 𝑿 = {𝒙1, 𝒙2, ..., 𝒙𝐹 } is the set of node attribute matrix with

𝒙𝑖 ∈ R𝑛×1 representing the attribute vector in 𝑖-th dimension. For

each node 𝑣 ∈ V , N𝑜𝑢𝑡 (𝑣) stands for the out-neighbors of 𝑣 and
N𝑖𝑛 (𝑣) stands for the in-neighbors.

Then, we define the continuous-time dynamic graph (CTDG).

Consider an initial graph of CTDG G0 = (V0, E0), the set of update
events Γ upon the graph consists of inserts and deletes of edges

2
,

represented as Γ = {𝑒1, 𝑒2, ..., 𝑒𝑖 , ...𝑒𝑝 }. After the 𝑖-th edge update

𝑒𝑖 = {𝑢𝑖 , 𝑣𝑖 } arrives the system, the current CTDG G𝑖−1 is trans-
ferred to G𝑖 . If 𝑒𝑖 already exists in G𝑖−1, 𝑒𝑖 is treated as a delete from
(𝑢𝑖 , 𝑣𝑖 ); otherwise, 𝑒𝑖 is treated as an insert. Different with CTDG,

a discrete-time dynamic graph (DTDG) is represented as a series

of snapshot {G0,G1, ...,G𝜏 , ...,G𝑇 }, where G𝜏 signifies the status of
graph at time 𝜏 . Since the evolutionary process (e.g., update events)

between two snapshots (e.g., G𝜏1 and G𝜏2 ) is not captured, CTDG
offers a more comprehensive representation than DTDG.

The research problem of this paper, representation learning on

CTDG, is to learn node representation for each node 𝑠 at any times-

tamp. Assume there are 𝑝 update events based on G𝑖 , our target
is to calculate the 𝐹 -dimensional node embeddings for the graph

G𝑖+𝑝 incrementally. The learned embeddings capture the dynamic

evolution of the CTDG and can be effectively applied to subsequent

graph tasks, such as node classification.

2.2 Graph Contrastive Learning
The representative scheme of Graph Contrastive Learning is Pre-
training and Evaluation, where the node representations are pre-
trained in a self-supervised manner first and then evaluated in

downstream tasks [39, 71]. The main ingredients of the pretraining

include: (i) Sampling Strategy based on graph augmentation pro-

ducing positive and negative sample pairs, and (ii) Loss Function
supervising the model to determine the similarity of each specific

representation pair [39, 62]. Detailed related works of Graph Con-

trastive Learning are described in Appendix A.2.

In graph-related scenarios, the common sampling strategy gen-

erates two or more augmentation views of the original graph with

2
The inserts and deletes of vertices can be replaced by adding and removing relevant

incident edges, hence we only discuss edge updates in this paper.
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Table 1: Comparison of pretraining complexity. 𝐾 stands for the number of convolution layers,𝑇 means the number of temporal
views, and 𝐹 is the dimension of node features.

Method Scenarios Encoder Complexity for Initial Graph Complexity for Updating 𝑝 Edges
Encoder Projector&Loss

DGI [58] static GCN [30] 𝑂 (4𝐾𝑛𝐹 2 + 4𝐾𝑚𝐹 ) 𝑂 (4𝑛𝐹 3 ) 𝑂 (4𝐾𝑛𝐹 2 + 4𝐾𝑚𝐹 + 4𝑛𝐹 3 )
GRACE [75] static GCN 𝑂 (4𝐾𝑛𝐹 2 + 4𝐾𝑚𝐹 𝑂 (4𝑛𝐹 2 + 2𝑛2𝐹 + 2𝑛𝐹 ) 𝑂 (4𝐾𝑛𝐹 2 + 4𝐾𝑚𝐹 + 2𝑛2𝐹 )
BGRL [55] static GCN 𝑂 (4𝐾𝑛𝐹 2 + 4𝐾𝑚𝐹 ) 𝑂 (4𝑛𝐹 2 + 4𝑛𝐹 ) 𝑂 (4𝐾𝑛𝐹 2 + 4𝐾𝑚𝐹 + 4𝑛𝐹 2 )
GGD [72] static GCN 𝑂 (4𝐾𝑛𝐹 2 + 4𝐾𝑚𝐹 ) 𝑂 (4𝑛𝐹 2 + 2𝑛𝐹 ) 𝑂 (4𝐾𝑛𝐹 2 + 4𝐾𝑚𝐹 + 4𝑛𝐹 2 )

DDGCL [56] dynamic TGAT [63] 𝑂 (4𝐾𝑛2𝐹 + 4𝐾𝑚𝐹 ) 𝑂 (2𝑛𝐹 3 + 2𝑛2𝐹 3 ) 𝑂 (4𝐾𝑛2𝐹 + 4𝐾𝑚𝐹 + 2𝑛2𝐹 3 )
CLDG [64] dynamic GCN 𝑂 (4𝐾𝑇𝑛𝐹 2 + 4𝐾𝑇𝑚𝐹 ) 𝑂 (4𝑇𝑛𝐹 2 + 2𝑛2𝑇 2𝐹 ) 𝑂 (4𝐾𝑇𝑛𝐹 2 + 4𝐾𝑇𝑚𝐹 + 2𝑛2𝑇 2𝐹 )
IDOL (ours) dynamic PPR+MLP 𝑂 (4𝑛𝐹 2 + 2𝐾𝑚𝐹 ) 𝑂 (𝑛𝐹 ) 𝑂 (4𝑛𝐹 2 +𝐾𝑚𝐹 + 𝑝 log𝑛)

various augmentation functions such as random node dropping and

feature masking [27, 67]. According to the connectivity similarity,

one popular mechanism is generally treating the representations

of the same node in two different views as a positive sample pair,

otherwise a negative one [56, 75]. The loss function of contrastive

learning denotes the negative estimated mutual information, where

the commonly used formats include Jensen–Shannon divergence

[22], NCE [19] and InfoNCE [46].

Specifically, for one node 𝑠 in the graph, the positive sample set

{+𝒛𝑠 } and negative sample set {−𝒛𝑠 } are extracted via the sampling

strategy and we denote the node embedding of node 𝑠 as 𝒛𝑠 3
.

Then, in the representation learning model, a GNN encoder 𝑓𝜃 (·)
parameterized by 𝜃 is utilized to generate node representations,

accompanied by a projector 𝑝 (·) (e.g., dot product) measures the

similarity of each representation pair. Finally, the pretraining goal

is to obtain the optimal encoder 𝜃 via the contrastive learning loss,

such as the following InfoNCE loss used by [49, 62, 75]:

L𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 = − 1
𝑛

𝑛∑︁
𝑠=1

log

𝑒𝑝 (𝒛𝑠 ,
+𝒛𝑠 )

𝑒𝑝 (𝒛𝑠 ,+𝒛𝑠 ) +∑𝑀𝑖=1 𝑒𝑝 (𝒛𝑠 ,−𝒛𝑖 ) , (1)

where 𝑝 (𝒛1, 𝒛2) = 𝑓𝜃 (𝒛1) 𝑓𝜃 (𝒛2)⊤/𝜏 and 𝜏 is a temperature hyper-

parameter. The InfoNCE loss estimates the mutual information

between each node representation 𝒛𝑠 with one positive sample
+𝒛𝑠

and𝑀 negative samples {−𝒛𝑖 }.

2.3 Personalized PageRank
Given a source node 𝑠 and a target node 𝑡 in a graph, the Person-

alized PageRank (PPR) [9] 𝜋 (𝑠, 𝑡) is a topology-based measure to

reflect the probability that a random walk starting from 𝑠 ends

at 𝑡 . The single-source PPR (SSPPR), which computes 𝜋 (𝑠, 𝑡) for
any 𝑡 in a graph given the source node 𝑠 , has been a significant

building block of various applications [18, 37, 38, 41, 42, 78]. Given

the source node 𝑠 , the SSPPR vector 𝝅 (𝑠) ∈ R1×𝑛 aims to obtain

the solution of the following equation:

𝝅 (𝑠) =
∞∑︁
𝑖=0

𝛼 (1 − 𝛼)𝑖 ·
(
𝑨𝑫−1

)𝑖
· 𝒆𝑠 , (2)

where𝑨 is the adjacent matrix,𝑫 is the degreematrix,𝛼 is the decay

factor of random walk, and 𝒆𝑠 is a one-hot vector with 𝒆𝑠 (𝑠) = 1,

respectively. The SSPPR computation needs to extract eigenvalues

of an 𝑛 × 𝑛 matrix and is expensive on a large-scale graph [59]. In

3
In the later sections, we call that 𝒛𝑠 and +𝒛𝑠 (resp. −𝒛𝑠 ) can form a positive (resp.

negative) pair for a clear presentation.

order to compute SSPPR efficiently, Forward Push algorithm [5] is

developed to approximate the value 𝜋 (𝑠, 𝑡) given the source node 𝑠

and 𝑡 ∈ V , which achieves an underestimate with an error bound.

A detailed description can be found in our technique report [12].

PPR-based Node Embedding. Since PPR can reflect the topo-

logical relationship between nodes, recent studies of simplified

GNNs [36] utilize the SSPPR algorithm combined with the attribute

matrix to calculate the embedding of nodes. Such PPR-based node

embedding is more efficient and scalable compared to graph prop-

agation via GNNs, and it facilitates incremental updates through

local modifications to the termination probability of random walks.

Specifically, SCARA [36] adopts the Forward Push algorithm to

enhance the scalability of the graph propagation and efficiency.

Instant [73] and DynAnom [17] utilize a model structure consisting

of PPR-based embedding and refreshing rules to achieve the incre-

mental update for the node embeddings. The hallmark of methods

employing Forward Push is their propagation process, which offers

a fundamental approximation guarantee. Interestingly, our empiri-

cal findings reveal that prioritizing efficiency over this guarantee

can actually enhance accuracy in contrastive learning. Therefore,

we simply aggregate node information from a fixed number of

neighboring hops to not only accelerate embedding computation

but also preserve high-quality results.

3 METHODOLOGY
3.1 Overview
In this section, we introduce our proposed IDOL, which is divided

into three key components as depicted in Figure 1. Firstly, different

from most of the existing contrastive learning methods utilizing

GCN [30] or TGAT[63] as graph encoder, we decouple the graph

propagation with training, and utilize PPR-based embeddings and

multi-layer perceptron (MLP) to incorporate the structural informa-

tion in the initial graph (Sec. 3.2). Secondly, given upcoming update

events, we incrementally update the node embedding efficiently

to avoid the propagation from scratch (Sec. 3.3). Moreover, instead

of generating two different augmented graphs from scratch, we

propose a novel topology-monitorable sampling strategy to avoid

the repetitive computation and directly select positive and negative

samples from the pre-existing historical embeddings (Sec. 3.4). Fi-

nally, we freeze the encoder parameters after pretraining and output

the node embeddings for evaluation in the downstream tasks (e.g.,

node classification). By exploring the connectivity between classi-

fication accuracy and the convergence of our contrastive loss, we

prove that our decoupled and simplified framework IDOL provides
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Maximize

Minimize

Updated
Embeddings

PPR-based
Embeddings

Incremental Updates

Topology-
monitorable 

Sampling

   MLP
 Encoder

Figure 1: Graphical illustration of the IDOL architecture. {z𝑠 }𝑖
denotes the node embeddings in G𝑖 . {+z𝑠 } and {−z𝑠 } denote
the positive and negative sample sets, respectively.

a performance guarantee of the downstream task, demonstrating

the theoretical feasibility and effectiveness (Sec. 3.5).

3.2 PPR-based Embedding by K-hop Push
To achieve scalable node embeddings and update them incremen-

tally in dynamic graphs, we utilize PPR-based algorithms to pre-

calculate node embeddings before processing them through the

MLP layer. The dominant paradigm of existing PPR-based embed-

ding derives from the insight of Forward Push based on a residue

threshold (e.g., [36]). Nonetheless, Forward Push, which aims to

approximate PPR scores with an accuracy guarantee, falls short in

effectively showcasing the expressive potential of all nodes during

graph propagation. This limitation can lead to an uneven distri-

bution of smoothness in the node embedding space, ultimately

resulting in a decline in performance [45, 70]. The experiments in

Sec. 4.5 indicate that this limitation leads to reduced prediction

accuracy compared with our method under the same propagation

time, alongside a heightened sensitivity to hyperparameter settings.

To solve the aforementioned issue, we incorporate the intuition

of APPNP [31] aggregating information of K-hop neighbors, and

employ a K-hop Push algorithm to pre-compute the PPR-base node

embeddings. Specifically, we deprecate the approximation paradigm

of Forward Push and adopts the 𝐾-hop truncated terms of Eq. 2 as

follows:

𝒉𝑖 =
𝐾−1∑︁
𝑙=0

𝛼 (1 − 𝛼)𝑙 ·
(
𝑨𝑫−1

)𝑙
· 𝒙𝑖 . (3)

By employing this design, we ensure that each node can acquire

a balanced smoothness distribution, aligning precisely with a sim-

plified complexity of 𝑂 (𝐾𝑚𝐹 ) as demonstrated in SGC [60], given

the hop number 𝐾 and feature dimension 𝐹 .

Initial Graph Embedding. To calculate the node embeddings in

initial graph G0, we conduct the K-hop Push algorithm to calculate

the PPR values of all nodes for each dimension of the attribute

matrix 𝑿 , which is shown in Algorithm 1. Specifically, we extract

the attribute vector (column vector) 𝒙𝑖 ∈ R𝑛×1 (1 ≤ 𝑖 ≤ 𝐹 ) for each
dimension of 𝑿 and assign it as the initial value of residue vector 𝒓0

𝑖
.

Meanwhile, the reserve vector 𝒉𝑖 ∈ R𝑛×1 is set as the all-zero vector.
Here in the PPR procedure, 𝒓𝑙

𝑖
represents the unpropagated mass

Algorithm 1: K-hop Push Algorithm

Input :Graph G = (V, E) , teleport probability 𝛼 , feature
matrix 𝑿 , number of propagation layer 𝐾 .

Output :Reserve vector 𝒉𝑖 and residue vector 𝒓𝐾
𝑖

(1 ≤ 𝑖 ≤ 𝐹 )
1 foreach 𝒙𝑖 ∈ 𝑿 do
2 𝒓0

𝑖
= 𝒙𝑖 ; 𝒉𝑖 = 0;

3 for 𝑙 = 0 to 𝐾 − 1 do
4 𝒓𝑙+1

𝑖
= 0;

5 foreach 𝑠 ∈ V do
6 foreach 𝑡 ∈ N𝑜𝑢𝑡 (𝑠 ) do

7 𝒓𝑙+1
𝑖
(𝑡 )+ = (1 − 𝛼 ) · 𝒓𝑙

𝑖
(𝑠 )

|N𝑜𝑢𝑡 (𝑠 ) | ;

8 𝒉𝑖 (𝑠 )+ = 𝛼 · 𝒓𝑙𝑖 (𝑠 ) ; 𝒓𝑙𝑖 (𝑠 ) = 0;

9 clear 𝒓𝑙
𝑖
;

of attribute vector 𝒙𝑖 , and 𝒉𝑖 represents the propagated part. Then,

we iteratively repeat the following steps for 𝑙 = {0, 1, ..., 𝐾 − 1}.
For each node 𝑠 ∈ V , (1 − 𝛼) fraction of 𝒓𝑙

𝑖
(𝑠) will be propagated

into the out-neighbors 𝑡 ∈ N𝑜𝑢𝑡 (𝑠), and hence each out-neighbor

𝑡 iteratively receives (1 − 𝛼) · 𝒓𝑙
𝑖
(𝑠)/|N𝑜𝑢𝑡 (𝑠) | and add it to the

residue 𝒓𝑙+1
𝑖
(𝑡). Additionally, 𝛼 fraction of 𝒓𝑙

𝑖
(𝑠) will be transferred

into the reserve vector 𝒉𝑖 (𝑠) and 𝒓𝑙
𝑖
(𝑠) is reset as 0. At the end of

𝑙-th iteration, we clear the residue vector 𝒓𝑙
𝑖
to save the space.

After we conduct the propagation and obtain the K-hop reserve

vector 𝒉𝑖 (1 ≤ 𝑖 ≤ 𝐹 ) via K-hop Push for all dimensions in 𝑿 , the

final node embedding matrix can be concatenated as:

𝒁 = Concat(𝒉1,𝒉2, ...,𝒉𝐹 ), (4)

where each node embedding 𝒛𝑠 ∈ R1×𝐹 . Compared with existing

contrastive learning methods utilizing GCN [30] or TGAT [63] for

graph propagation, the above PPR-based embedding process is more

efficient and scalable. We will further discuss the computational

complexity in the Sec. 3.6.

3.3 Incremental Embedding Update
In our decoupled contrastive learning approach, we initially pre-

calculate node embeddings for the initial graph using the previously

described steps. However, the graphs incur frequent updates upon

the nodes and edges in the dynamic scenarios, which requires

us to incorporate the updated information and reform the node

embedding. Instead of recalculating embedding from scratch or

requiring repetitive convolution operations such as the works in

[6, 56], we focus on transforming partial embeddings incremen-

tally triggered by the update events. Due to the characteristics of

the PPR algorithm, one can locally adjust the reserve vector 𝒉𝑖
and residue vector 𝒓𝑖 for value updates provided that the invariant

property between them is maintained [17, 73]. Following the up-

dating streamline of the vanilla PPR methods employed in Instant

[73] and DynAnom [17], we adopt a similar approach to refresh

the embeddings while holding the invariant property. For com-

pleteness, we refer interested readers to our technical report [12]

for a complete proof and references. Given the invariant property

𝒉𝑖 (𝑢) + 𝛼𝒓𝑖 (𝑢) = 𝛼𝒙𝑖 (𝑢) +
∑
𝑣∈N𝑜𝑢𝑡 (𝑢 )

(1−𝛼 )𝒉𝑖 (𝑣)
|N𝑜𝑢𝑡 (𝑣) | (𝑢 ∈ V), we

summarize the heart of updating rules in the following lemma:
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Lemma 1. When adding an edge (𝑢, 𝑣), performing the follow-
ing rules can maintain this invariant property: 𝒓𝑖 (𝑢) ← 𝒓𝑖 (𝑢) −

𝒉𝑖 (𝑢 )
𝛼 |N𝑜𝑢𝑡 (𝑢 ) | , 𝒓𝑖 (𝑣) ← 𝒓𝑖 (𝑣)+ (1−𝛼 )𝒉𝑖 (𝑢 )𝛼 |N𝑜𝑢𝑡 (𝑢 ) | ,𝒉𝑖 (𝑢) ← 𝒉𝑖 (𝑢)· |N𝑜𝑢𝑡 (𝑢 ) |+1|N𝑜𝑢𝑡 (𝑢 ) | .

Compatibility with DTDG. By adhering to these principles,

edges are incorporated into the CTDG based on their chronolog-

ical sequence. DTDG, a specific instance of CTDG, can also be

managed using the update rules by leveraging the timestamps of

edges across various snapshots. Given that the degree of node

𝑢 at time 𝜏 is N𝜏𝑜𝑢𝑡 (𝑢) and the degree change from 𝜏1 to 𝜏2 is

Δ𝜏1,𝜏2 (𝑢) = N
𝜏2
𝑜𝑢𝑡 (𝑢) − N

𝜏1
𝑜𝑢𝑡 (𝑢), we can update the reserve and

residue vector from snapshot G𝜏1 to G𝜏2 utilizing the following

derivative rules: 𝒓𝑖 (𝑢) ← 𝒓𝑖 (𝑢) −
Δ𝜏

1
,𝜏
2
(𝑢 ) )𝒉𝑖 (𝑢 )

𝛼 |N𝜏1𝑜𝑢𝑡 (𝑢 ) |
, 𝒓𝑖 (𝑣) ← 𝒓𝑖 (𝑣) +

(1−𝛼 )Δ𝜏
1
,𝜏
2
(𝑢 )𝒉𝑖 (𝑢 )

𝛼 |N𝜏1𝑜𝑢𝑡 (𝑡 ) |
,𝒉𝑖 (𝑢) ← 𝒉𝑖 (𝑢) ·

|N𝜏2𝑜𝑢𝑡 (𝑡 ) |
|N𝜏1𝑜𝑢𝑡 (𝑡 ) |

.

With the rules above, we incrementally update the vectors of

nodes affected by the update event, accompanied by updating their

node embeddings.We provide the pseudo-code of updating the node

embeddings in our technique report [12]. With such embedding

update approach, we next discuss how to generate contrastive pairs

for the updated embeddings using a topology-based approach as

detailed in Section 3.4.

3.4 Topology-monitorable Sampling
The concepts of graph augmentation are central to the paradigm of

contrastive learning. Recent works [56] emphasize the assumption

that the evolution of graphs unfolds smoothly, and the overall

properties remain relatively stable despite occasional edge updates.

However, this constraint is impractical and too strong in real-world

applications, as a node might undergo substantial updates in a short

interval while remaining unchanged over an extended one. We

experimentally prove that employing this assumption is suboptimal

to capture the practical dynamics in Sec. 4.5.

In order to break this strong constraint, we propose a topology-

monitorable sampling strategy to generate positive and negative

samples from the topological views in the dynamic graph. Formally,

given a snapshot G𝑖+𝑝 to be predicted, we explicitly exploit the

topological transformation caused by 𝑝 update events and adopt a

PPR-based approach to distinguish the positive and negative pairs

from the historical embeddings of G𝑖 .
Topological measurement by PPR. As a measurement of

topological information, the difference in SSPPR values between

two snapshots G𝑖 and G𝑖+𝑝 reflect the topological change on a

node caused by 𝑝 updates. Since SSPPR contains 𝜋 (𝑠, 𝑡) for any
𝑡 in a graph given the source node 𝑠 , we utilize the maximum

value of

��𝜋 (
G𝑖+𝑝 , 𝑠, 𝑡

)
− 𝜋 (G𝑖 , 𝑠, 𝑡)

��
to describe the impact degree

of the node 𝑠 caused by 𝑝 updates. Then we define an impact vector
𝑰G𝑖 ,G𝑖+𝑝 ∈ R𝑛×1 representing the impact degrees on all graph nodes,

where each element of 𝑰G𝑖 ,G𝑖+𝑝 is defined as:

𝑰G𝑖 ,G𝑖+𝑝 (𝑠) = max

𝑡 ∈V𝑖

��𝜋 (
G𝑖+𝑝 , 𝑠, 𝑡

)
− 𝜋 (G𝑖 , 𝑠, 𝑡)

�� , 𝑠 ∈ V𝑖 . (5)

Upper bound of impact vector. As the graph evolves, the

measurement 𝑰G𝑖 ,G𝑖+𝑝 (𝑠) can capture the upper bound of topolog-

ical change on node 𝑠 and guide us to distinguish positive and

negative samples. However, the exact result of 𝑰G𝑖 ,G𝑖+𝑝 requires a

time-consuming computation with respect to all-pair PPR values,

Algorithm 2: Dynamic Sampling Algorithm

Input :Node embedding 𝒛′𝑠 for all 𝑠 ∈ V𝑖 based on graph G𝑖 ,
residue threshold 𝑟𝑏𝑚𝑎𝑥 , gap threshold 𝜆, update event

sequence Γ = { (𝑢1, 𝑣1 ), (𝑢2, 𝑣2 ), ...., (𝑢𝑝 , 𝑣𝑝 ) }.
Output :Positive sample

+𝒛𝑠 or negative sample
−𝒛𝑠 for each

𝑠 ∈ V𝑖+𝑝 in G𝑖+𝑝
1 /* Reverse Push from {𝑢1,𝑢2, ...,𝑢𝑝 } */
2 𝒓𝑏 = 0;𝝅𝑏 = 0;
3 foreach (𝑢 𝑗 , 𝑣𝑗 ) ∈ Γ do

4 𝒓𝑏 (𝑢 𝑗 ) =
��|N𝑜𝑢𝑡 (G𝑖+𝑝 ,𝑢 𝑗 ) |−|N𝑜𝑢𝑡 (G𝑖 ,𝑢 𝑗 ) |��

|N𝑜𝑢𝑡 (G𝑖+𝑝 ,𝑢 𝑗 ) | ;

5 while ∃𝑠 ∈ 𝑉 s.t. 𝒓𝑏 (𝑠 ) > 𝑟𝑏𝑚𝑎𝑥 do
6 foreach 𝑡 ∈ N𝑖𝑛 (G𝑖 , 𝑠 ) do
7 𝒓𝑏 (𝑡 )+ = (1 − 𝛼 ) ·

𝒓𝑏 (𝑠 )
|N𝑜𝑢𝑡 (G𝑖 ,𝑡 ) | ;

8 𝝅𝑏 (𝑠 )+ = 𝛼 · 𝒓𝑏 (𝑠 ) ; 𝒓𝑏 (𝑠 ) = 0;

9 /* Sampling Contrastive Pairs */

10 foreach 𝑠 ∈ V do

11 if 𝑟
𝑏
𝑚𝑎𝑥 +𝝅𝑏 (𝑠 )

𝛼
≥ 𝜆 then

12 −𝒛𝑠 = 𝒛′𝑠 ,
− 𝒁G𝑖+𝑝 .add(−𝒛𝑠 )

13 else
14 +𝒛𝑠 = 𝒛′𝑠 ,

+ 𝒁G𝑖+𝑝 .add(+𝒛𝑠 )

which refers to the calculation of 𝜋
(
G𝑖+𝑝 , 𝑠, 𝑡

)
and 𝜋 (G𝑖 , 𝑠, 𝑡) for

all 𝑠, 𝑡 ∈ V𝑖 . Instead of the redundant calculation, we estimate the

upper bound of 𝑰G𝑖 ,G𝑖+𝑝 (𝑠) in the following lemma:

Lemma 2. Given the update sequence Γ = {(𝑢1, 𝑣1), (𝑢2, 𝑣2), ...,
(𝑢𝑝 , 𝑣𝑝 )}, we have:

𝑰G𝑖 ,G𝑖+𝑝 (𝑠) ≤
𝑝∑︁
𝑗=1

��|N𝑜𝑢𝑡 (G𝑖+𝑝 , 𝑢 𝑗 ) | − |N𝑜𝑢𝑡 (G𝑖 , 𝑢 𝑗 ) |��𝜋 (G𝑖 , 𝑠, 𝑢 𝑗 )
𝛼 |N𝑜𝑢𝑡 (G𝑖+𝑝 , 𝑢 𝑗 ) |

.

Based on Lemma 2, the impact on any 𝑠 ∈ V𝑖 caused by the

update sequence Γ is related to the PPR value 𝜋
(
G𝑖 , 𝑠, 𝑢 𝑗

)
and the

degree |N𝑜𝑢𝑡
(
G𝑖 , 𝑢 𝑗

)
| and |N𝑜𝑢𝑡

(
G𝑖+𝑝 , 𝑢 𝑗

)
|, where 𝑢 𝑗 is the start-

ing node of the updated edge in Γ. The calculation of 𝜋
(
G𝑖 , 𝑠, 𝑢 𝑗

)
for

all 𝑠 ∈ G𝑖 can be implemented by Reverse Push algorithm focusing

on single-target PPR [4]. Nonetheless, the Reverse Push method can

only assist in estimating a single update, making it inefficient when

dealing with batch updates (e.g., update sequence Γ).
Considering the batch update events included in Γ, we incorpo-

rate the insight of Reverse Push to efficiently estimate the upper

bound of 𝑰G𝑖 ,G𝑖+𝑝 (𝑠) after 𝑝 update events for each 𝑠 ∈ V𝑖 , which is

shown in Algorithm 2 (lines 3-8). Similar toK-hop Push, wemaintain

an auxiliary residue vector 𝒓𝑏 . We assign the intial value of 𝒓𝑏 at𝑢 𝑗 as
| |N𝑜𝑢𝑡 (G𝑖+𝑝 ,𝑢 𝑗 ) |− |N𝑜𝑢𝑡 (G𝑖 ,𝑢 𝑗 ) | |

|N𝑜𝑢𝑡 (G𝑖+𝑝 ,𝑢1 ) | , where 𝑢 𝑗 is the starting point of the

update event in Γ (line 4), and otherwise set it as 0. The difference is

that we set a residue threshold 𝑟𝑏𝑚𝑎𝑥 to early stop the iteration pro-

cess (line 5) and the residue value (e.g., 𝒓𝑏 (𝑠)) is propagated along

the in-neighbor setN𝑖𝑛 (G𝑖 , 𝑠) (line 6). Notice that forDynamic Sam-
pling we replace the manner utilized in K-hop Push since setting the
threshold 𝑟𝑏𝑚𝑎𝑥 can provide us with an intermediate upper bound of

𝑰G𝑖 ,G𝑖+𝑝 (𝑠) demonstrated as: 𝑰G𝑖 ,G𝑖+𝑝 (𝑠) ≤
𝝅𝑏 (𝑠 )+𝑟𝑏𝑚𝑎𝑥

𝛼 . To simplify

our presentation, we directly introduce this crucial intermediate

upper bound here. It plays a pivotal role in sampling contrastive
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pairs, as elaborated in the upcoming Lemma 3. The detailed proof

of this upper bound can be found in the technique report [12].

Sampling with impact vector. After the iteration in Reverse

Push ends, we compared the value of
𝑟𝑏𝑚𝑎𝑥+𝝅𝑏 (𝑠 )

𝛼 with an empirical

gap threshold 𝜆 to filter the positive samples from G𝑖 satisfying
𝑰G𝑖 ,G𝑖+𝑝 (𝑠) ≤ 𝜆, as presented in the following lemma:

Lemma 3. Given the update event sequence Γ = {(𝑢1, 𝑣1), (𝑢2, 𝑣2),
..., (𝑢𝑝 , 𝑣𝑝 )}, the result returned by Algorithm 2 guarantees that for
any node index 𝑠 in {+𝒛𝑠 }, we have 𝑰G𝑖 ,G𝑖+𝑝 (𝑠) ≤ 𝜆.

Based on Lemma 3, the nodes experiencing minor impacts, as de-

termined by 𝜆, are selected. Then we treat the corresponding histor-

ical embeddings in G𝑖 as the positive sample set {+𝒛𝑠 }. Meanwhile,

we retain other nodes that incur significant topological changes and
treat their historical embeddings as negative samples (line 10-14).

Here we also denote the positive and negative samples of G𝑖+𝑝 as

+𝒁G𝑖+𝑝 = {+𝒛𝑠 } and −𝒁G𝑖+𝑝 = {−𝒛𝑠 } respectively. The concrete

value of 𝑛𝑝 = |+𝒁G𝑖+𝑝 | and 𝑛𝑔 = |−𝒁G𝑖+𝑝 | can be coordinated by

setting different threshold 𝜆 and we can easily get 𝑛𝑝 + 𝑛𝑔 = 𝑛,

where 𝑛 is the number of nodes.

3.5 Theoretical Performance Guarantee
After pre-calculating the node embeddings and building contrastive

pairs, we form our contrastive loss within a decoupled architec-

ture. Generally, the contrastive loss enforces the embeddings to

be discriminative between the positive pairs from the joint dis-

tribution 𝑝 (𝒛𝑠 ,+ 𝒛𝑠 ) and the negative pairs from the marginal dis-

tribution 𝑝 (𝒛𝑠 ) and 𝑝 (−𝒛𝑠 ). Given the positive sample set
+𝒁G𝑖+𝑝

and negative sample set
−𝒁G𝑖+𝑝 , the node representations after

our MLP encoder is denoted as 𝑓𝜃 (𝒛𝑠 ), 𝑓𝜃 (+𝒛𝑠 ) and 𝑓𝜃 (−𝒛𝑠 ). Here
𝑓𝜃 (𝒛𝑠 ) = 𝒛𝑠 ·𝒘𝜃 ∈ R1×𝐹

′
, where𝒘𝜃 ∈ R𝐹×𝐹

′
is the shared trainable

parameters and 𝐹 ′ is the hidden dimension of the representation.

Then we build the contrastive objective of IDOL as follows:

L𝐼𝐷𝑂𝐿 =
1

𝑛

©«
𝑛𝑔∑︁
𝑠=1

𝑓𝜃 (𝒛𝑠 ) 𝑓𝜃 (−𝒛𝑠 )⊤ −
𝑛∑︁

𝑠=𝑛𝑔+1
𝑓𝜃 (𝒛𝑠 ) 𝑓𝜃 (+𝒛𝑠 )⊤

ª®¬ , (6)

where we denote the index of nodes which have the negative sam-

ples as {1, 2, ...𝑛𝑔}, and the index with respect to positive samples

as {𝑛𝑔 + 1, 𝑛𝑔 + 2, ...𝑛𝑔 + 𝑛𝑝 }. The overall number of positive and

negative samples is identical to 𝑛, which is significantly smaller

than that of previous loss functions such as InfoNCE in Eq. 1. Note

that since there is no historical embedding to augment the initial

graph G0, we follow the work in [58, 72] and shuffle the node order

in 𝑿 to generate negative samples, where we have 𝑛𝑝 = 0, 𝑛𝑔 = 𝑛.

We further provide a theoretical perspective to prove the capa-

bility of topology-monitorable graph contrastive learning in down-

stream tasks. Considering the classical node classification task, we

use 𝒀 = {𝑦1, 𝑦2, ..., 𝑦𝑛} to denote the label set and we adopt the

Cross-Entropy (CE) loss [11] as:

L𝐶𝐸 = − 1
𝑛

𝑛∑︁
𝑠=1

log

exp

(
𝑓𝜃 (𝒛𝑠 )𝑤⊤𝑦𝑠

)
∑𝐶
𝑖=1 exp

(
𝑓𝜃 (𝒛𝑠 )𝑤⊤𝑖

) (7)

where𝑤𝑖 is the trainable weights for 𝑖-th class in the linear classifier

utilized in downstream tasks and the weight matrix is denoted as

𝑾𝐶 = {𝑤1,𝑤2, ...,𝑤𝐶 } given there are 𝐶 classes.

The performance in the downstream tasks and the contrastive

pretraining are demonstrated by the downstream task loss L𝐶𝐸
and the contrastive loss L𝐼𝐷𝑂𝐿 respectively. Then, we have the

following upper bound of the downstream task loss L𝐶𝐸 :
Lemma 4. The loss L𝐶𝐸 can be bounded by the loss L𝐼𝐷𝑂𝐿 :

L𝐶𝐸 ≤ L𝐼𝐷𝑂𝐿 + log𝐶 +
2

3

𝑎2 (8)

holds with probability at least 1 − 𝑂 (1/𝑛). Here we assume 𝑿 ∈
[−1, 1] after the feature normalization, and our graph encoder 𝑓𝜃 (·)
is Xavier [14] initialized using a uniform distribution𝒘𝜃 ∼ 𝑈 (−𝑎, 𝑎).

Regarding IDOL’s decoupled architecture during graph propa-

gation and pretraining, Lemma 4 hints a crucial point: the extent

of pretraining considerably impacts the performance of the down-

stream tasks. Given that the value of (log𝐶 + 2

3
𝑎2) is relatively

minor compared to the loss value, reducing L𝐼𝐷𝑂𝐿 can effectively

enhance downstream task performance. This observation supports

the fact that even a single epoch of pretraining with IDOL can yield

high accuracy in downstream tasks. Additionally, the improved

convergence of the contrastive loss further boosts the classification

accuracy. This observation is validated in our hyperparameter anal-

ysis, as shown in Sec. 4.6 where we varied the number of training

epochs in the encoder. Moreover, while this direct association be-

tween pretraining and downstream task performance is specific to

IDOL, it could also shed light on the rationale behind the need for

sufficient pretraining epochs in existing graph contrastive learning

methods [44, 55, 58] in improving downstream task performance.

3.6 Complexity Analysis
Compared with the contrastive methods using GCN-based encoder

such as [55, 58, 72, 75], IDOL takes less time to pretrain in the dy-

namic scenarios. Taking a𝐾-layer [30] GCN encoder as an example,

these methods need to take 𝑂 (4𝐾𝑛𝐹 2 + 4𝐾𝑚𝐹 ) time
4
per training

step including forward propagation and backward propagation

of the network. On the initial graph, IDOL directly computes the

node embeddings by our K-hop algorithm, which only consumes

𝑂 (2𝐾𝑚𝐹 ) time (𝑂 (𝐾𝑚𝐹 ) for negative sampling). In addition to the

MLP encoder (optional as one layer), the complexity of IDOL on

the initial graph per training step is 𝑂 (4𝑛𝐹 2 + 2𝐾𝑚𝐹 ).
When incurring the update events, the GCN-encoder needs to

conduct the graph propagation and network training from scratch,

In contrast, the embedding update only consumes 𝑂 (𝐾𝑚𝐹 ) time
5
,

since we reuse the historical embeddings as our positive and nega-

tive samples. For the complexity of distinguishing positive and neg-

ative samples, the Reverse Push consume 𝑂 (𝑝/𝑟𝑏𝑚𝑎𝑥 ) time given 𝑝

update events [4]. Since we set an empirical value as 𝑟𝑏𝑚𝑎𝑥 = 1/log𝑛,
the complexity for updating 𝑝 edges is 𝑂 (4𝑛𝐹 2 + 𝐾𝑚𝐹 + 𝑝 log𝑛).
The summary of the above analysis can be viewed in Table 1.

4 EXPERIMENTS
In this section, we evaluate IDOL to show its effectiveness and effi-

ciency for contrastive learning in dynamic graphs. We conducted

4
Here we assume for simplicity that the hidden size is 𝐹 . This complexity includes

𝑂 (2𝐾𝑛𝐹 2 + 2𝐾𝑚𝐹 ) for positive encoder and 𝑂 (2𝐾𝑛𝐹 2 + 2𝐾𝑚𝐹 ) for negative

encoder.

5
In practice, the complexity of incremental update given 𝑝 update events is much

smaller than𝑂 (𝐾𝑚𝐹 ) when 𝑝 is not large.
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Table 2: Statistics of the datasets. 𝐹 , 𝐶, and 𝑆 stand for the
dimension of attributes, the number of classes, and the num-
ber of edge sequences.

Datasets n m F C S

Arxiv 169,343 1,157,799 128 40 16

Mag 736,389 10,792,672 128 349 16

Products 2,449,029 61,859,012 100 47 16

Patent 2,738,012 13,960,811 128 6 16

the experiments on a Linux machine with an Intel(R) Xeon(R) Gold

6238R CPU @ 2.20GHz with 160GB RAM and an NVIDIA RTX

A5000 with 24GB memory. We provide an open-source implementa-

tion of our model IDOL at https://github.com/ZulunZhu/dynamic-

contrastive-learning.git. More interesting experiments and analysis

can be found in our technique report [12].

4.1 Datasets
We conduct our experiments on four commonly used datasets:Arxiv,
Mag, Products [23], and Patent [20]. These datasets are chosen to

demonstrate the effectiveness of IDOL in various graph application

scenarios, such as citation networks, web graphs, and recommenda-

tion systems. The statistics of four datasets are introduced in Table

2. For Arxiv,Mag, Products, the partition of training, validation, and

testing set follows a chronological split in OGB [23]. For the dy-

namic dataset Patent, the training size is arranged as 70% including

10% for validation. All results shown are the averages from 10 runs.

4.2 Baseline Methods
We compare IDOL with the following graph contrastive learning

baselines: DGI[58],BGRL [55], GGD[72] and SUGRL [44]. We also

compare IDOL with CLDG[64], a state-of-the-art contrastive learn-

ing method focusing on dynamic graphs. Furthermore, two classical

GNN methods are included, GCN [30] and SGC [60], along with

two scalable GNNmethods, SCARA [36] and Instant [73]. To ensure

reproducibility, we provide a detailed experiment setting in Appen-

dix A.3. Specifically, for Topology-monitorable Sampling, we set the
threshold 𝑟𝑏𝑚𝑎𝑥 = 1/log𝑛 and 𝜆 = 1/𝑛 by default in IDOL, where

𝑛 is the node number of datasets. Then, for our two PPR-based

algorithms, we set the teleport probability 𝛼 = 0.1 on Arxiv, Mag
Products, and 𝛼 = 0.2 on Patent.

4.3 Comparison within CTDG settings
In our experiments, we employ the node classification task in dy-

namic graphs to evaluate the embedding quality of our method. In

order to simulate the dynamic scenarios, we follow the experiment

setting of CTDG in [73] to segment the whole graph and transform

it into evolving states on these datasets. Formally, we divide the

whole graph into an initial graph and 𝑆 partitions of edge sequences

for demonstration, where the edge sequences are extracted evenly

from the complete graph. During the evaluation process, we pro-

gressively update the initial graph with 𝑆 partitions of removed

edges following the format of CTDG and evaluate all models after

each addition of these partitions. Notably, the additions of removed

edges are ordered according to the true timestamps.

Dynamic accuracy comparison.Wefirst compare the accuracy

performance of IDOL with the competitive baselines. For a clear

(a) Arxiv (b) Mag

(c) Products (d) Patent

Figure 2: Micro-F1 scores in each snapshot of four datasets.

demonstration, we evaluate the Macro-F1 and Micro-F1 scores and

report the average values over all moments of evaluation, which

is summarized in Table 3. It can be seen that IDOL outperforms

previous contrastive learning methods (e.g., DGI, BGRL, SUGRL,

GGD, and CLDG) with a non-trivial gap. Compared with the worst

model DGI and the best CLDG, our method on average improves by

7.33% and 4.07% on Products dataset, respectively. We also note that

IDOL surpasses traditional supervised GNN methods such as GCN,

SGC, SCARA, and Instant, all of which are trained through an end-

to-end supervised process without incorporating the contrastive

learning mechanism. This finding reinforces the notion that the

integration of the contrastive learning paradigm can significantly

enhance the quality of embeddings.

Moreover, we present the detailed performance of multiple con-

trastive learning methods when adding each edge sequence, which

is shown in Figure 2. We adopt the Micro-F1 scores to measure this

comparison and we have the following key observation: The predic-
tion performance of IDOL outperforms the state-of-the-art methods
across four datasets. It is worth noting that, IDOL achieves compa-

rable or even better results on each snapshot of all datasets, where

IDOL even outperforms the advanced methods DGI and GGD by

over 16.5% on the initial graph of Products datasets. Notice that

for Products and Patent datasets, IDOL substantially outperforms

the baselines by a large margin, including the competitive method

CLDG. The notable performance advantage of IDOL can be credited

to its use of an efficient full-graph processing approach for training,

in contrast to other methods that require batch processing and

neighbor sampling in large graphs. This approach, which fully inte-

grates topology information, significantly enhances performance.

Dynamic efficiency comparison. To demonstrate the effi-

ciency of IDOL, we investigate the time consumption of each con-

trastive learning method on each dataset. Table 4 reports the av-

erage pretraining time (per epoch) over all snapshots. Similarly,

we also provide the detailed results on all datasets for each evalua-

tion in Figure 3. For the initial graph, we observe that IDOL shares

a close time consumption as baseline methods, which includes

the time of embedding calculation and network training. Never-

theless, in the later addition of edge sequences, IDOL drastically
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Table 3: The prediction accuracy (%) on four datasets. "OOM" stands for out of memory on a GPU with 24GB memory. The best
results are underlined and bold.

Method Arxiv Mag Products Patent
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN 68.42 ± 0.32 47.24 ± 0.29 33.71 ± 0.33 13.72 ± 0.27 74.43 ± 0.17 35.62 ± 0.21 77.60 ± 0.55 78.01 ± 0.52
SGC 68.54 ± 0.37 47.47 ± 0.27 32.66 ± 0.25 14.38 ± 0.26 74.54 ± 0.26 35.82 ± 0.17 77.81 ± 0.49 78.26 ± 0.36

SCARA 68.89 ± 0.26 48.19 ± 0.20 33.36 ± 0.29 14.82 ± 0.17 78.13 ± 0.25 38.42 ± 0.19 81.51 ± 0.73 81.91 ± 0.61
Instant 68.14 ± 0.12 48.01 ± 0.10 33.54 ± 0.21 14.68 ± 0.18 77.86 ± 0.11 38.03 ± 0.16 81.24 ± 0.65 81.48 ± 0.66

DGI 66.69 ± 0.54 43.28 ± 0.31 32.78 ± 0.41 12.94 ± 0.29 72.11 ± 0.29 34.20 ± 0.20 75.45 ± 0.94 76.01 ± 0.31
BGRL 66.31 ± 0.47 43.42 ± 0.24 31.59 ± 0.87 12.58 ± 0.33 OOM OOM OOM OOM

SUGRL 65.81 ± 0.94 42.53 ± 0.88 30.71 ± 0.75 12.14 ± 0.31 OOM OOM OOM OOM

GGD 67.45 ± 0.36 44.10 ± 0.25 32.89 ± 0.29 13.43 ± 0.16 72.35 ± 0.31 35.08 ± 0.13 75.36 ± 0.21 75.93 ± 0.44
CLDG 68.05 ± 0.87 46.15 ± 0.56 33.73 ± 0.75 14.70 ± 0.22 75.37 ± 0.50 37.47 ± 0.81 77.18 ± 0.87 77.64 ± 0.25

IDOL 69.80 ± 0.21 49.44 ± 0.12 35.34 ± 0.20 16.51 ± 0.15 79.44 ± 0.12 40.13 ± 0.12 84.19 ± 0.87 84.11 ± 0.75

Table 4: The pretraining time (s) per epoch on four datasets.

Method Arxiv Mag Products Patent

DGI 5.15 ± 0.75 18.42 ± 1.67 113.06 ± 5.52 101.46 ± 2.65
BGRL 6.47 ± 0.50 54.93 ± 5.29 OOM OOM

SUGRL 2.16 ± 0.04 10.14 ± 1.19 OOM OOM

GGD 4.94 ± 0.44 17.34 ± 1.56 105.49 ± 3.23 104.96 ± 2.39
CLDG 2.00 ± 0.37 12.70 ± 2.19 77.77 ± 2.74 65.68 ± 3.14

IDOL 1.76 ± 0.18 9.02 ± 1.02 20.67 ± 2.15 36.57 ± 1.65

(a) Arxiv (b) Mag

(c) Products (d) Patent

Figure 3: Pretraining time comparison.

achieves orders-of-magnitude acceleration, and the gap between

IDOL and baseline methods becomes even more pronounced as

the graph scale increases. Especially, in the full graph of Products,
GGD and DGI require over 120 seconds each epoch for pretrain-

ing, while IDOL completes this process in just 16.2 seconds. Even

faced with suboptimal baseline CLDG, IDOL can still achieve up

to (77.77 − 20.67)/77.77 = 73.42% reduction of pertaining time on

average. It’s important to highlight that both IDOL and GGD can

achieve high prediction accuracy reported in Figure 2 with only one

epoch, owing to their rapid convergence. Conversely, DGI, BGRL,

SUGRL, and CLDG require over 50 epochs to reach a competitive

performance, showing a substantial disparity in training efficiency.

Table 5: The average prediction accuracy (%) on Mooc and
Reddit datasets for 10 runs. The average time consumption
(𝑠) of pretraining time is enclosed in the bracket. (/) means
the corresponding algorithm requires no pretraining stage
on this task. The best results are underlined and bold.

Method Node Classification Link Prediction
Mooc Reddit Mooc Reddit

JODIE [33] 61.53(/) 53.64(/) 94.53(/) 95.78(/)
TGN [51] 69.03(65.65𝑠 ) 55.53(128.86𝑠 ) 98.24(/) 98.76(/)

DDGCL [56] 57.11(59.65𝑠 ) 52.79(101.89𝑠 ) 98.11(89.65𝑠 ) 98.17(189.11𝑠 )
IDOL 67.34(1.64s) 55.21(6.64s) 99.07(3.98s) 98.97(10.93s)

The remarkable performance of IDOL can be attributed to two

primary factors. First, IDOL efficiently saves pretraining time by

incorporating edge updates and implementing incremental embed-

ding refreshment. Additionally, its straightforward MLP structure

simplifies the networks and further enhances training efficiency.

Secondly, our topology-monitorable sampling method, designed to

capture topological changes from an evolving perspective, directly

contributes to potential improvements in the quality of positive

and negative pairs. Collectively, these two factors underpin IDOL’s

exceptional efficiency and effectiveness, respectively.

4.4 Comparison within DTDG Settings
In the above experiments, we adopt the CTDG setting to evaluate

the performance of IDOL on large-scale datasets. It’s worth noting,

though, that some DTDG-based algorithms, which don’t scale well

in these large-scale datasets, can still perform competitively on

smaller datasets by leveraging the fine-grained time information.

To further establish IDOL’s versatility, we conducted a compara-

tive analysis of IDOL against a selection of prominent algorithms

on two smaller datasets, Mooc [1] and Reddit [2]. In this experi-

ment, we follow the DTDG setting outlined in existing literature

[32, 50, 56], which focuses on predictions for the fully-formed final

graph. The results of node classification and link prediction tasks are

summarized in Table 5. Based on this result, IDOL demonstrates

broad applicability across various graph types and downstream

tasks, achieving comparable prediction accuracy while necessitat-

ing shorter pretraining durations. This underscores IDOL’s capacity

for generalization and efficiency in diverse graph environments.
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Table 6: Ablation studies of K-hop Push on the Patent dataset.
F (𝑥) denotes Forward Push with 𝑟𝑚𝑎𝑥 = 𝑥 , and K(𝑥),S(𝑥)
denotes K-hop Push and propagation using SGC with 𝐾 = 𝑥

respectively. w/o. means without.

Variants w/o. F(10−5 ) F(10−7 ) S (2) S (4) K (2) K (4)

Time(s) 0 0.10 37.06 15.14 57.54 7.43 36.57

Accuracy(%) 19.65 29.24 81.24 73.95 77.81 83.85 84.19

Table 7: Ablation studies on sampling strategies. 𝜏+ = 𝑖 and
𝜏− = 𝑖 mean selecting previous 𝑖-th snapshot as the positive
and negative samples respectively. Corr. means the random
corruption. w/o. means without.

Variants w/o. Corr. 𝜏+ = 1 𝜏+ = 5 𝜏− = 5 𝜏− = 10 IDOL

Arxiv 69.24 69.36 70.49 69.94 70.26 70.38 72.41

Mag 32.22 33.37 35.64 33.44 34.56 34.74 36.38

Product 73.99 74.87 76.89 75.67 76.26 76.64 78.11

4.5 Ablation Studies
In this section, we conduct ablation studies on the variants of IDOL

to verify the effectiveness of two key modules comprehensively:

K-hop Push and Topology-monitorable Sampling.
K-hop Push. On Patent datasets, we replace K-hop Push module

with the conventional Forward Push algorithm [8, 73] which utilizes

an empirical threshold 𝑟𝑚𝑎𝑥 to early stop the iteration of graph

propagation. Moreover, we also replace K-hop Push with the propa-

gation method in SGC [60] for a comparison. As shown in Table 6,

Forward Push and K-hop Push require more propagation time with

a smaller 𝑟𝑚𝑎𝑥 and a larger 𝐾 , respectively. Nevertheless, K-hop
Push consistently achieves higher accuracy within a comparable

time frame. Furthermore, the notable variability in performance

with Forward Push implies the need for careful selection of the 𝑟𝑚𝑎𝑥
threshold, while K-hop Push proves to be more stable across various

settings of hop number 𝐾 .

Topology-monitorable Sampling. We compare our sampling

strategy with the time-based strategy in [56], which adopts different

timewindows to sample the positive and negative pairs. To generate

different variants, we replace the positive or negative samples in

Topology-monitorable Sampling by directly sampling from all nodes

in the previous 𝜏+-th or 𝜏−-th snapshot, respectively. Additionally,

we also provide a sampling strategy named random corruption for

comparison, which disturbs the graph topology for augmentation

and is widely used in previous works [55, 58, 72]. As indicated

in Table 7, we evaluate different sampling strategies on the final

snapshot of three datasets. It is evident that, compared with our

method, the utilization of time-based strategies consistently results

in a decline in prediction accuracy. Additionally, this decline in

accuracy is tied to the incorrect categorization of negative and

positive samples. For example, on the Arxiv dataset, accuracy falls

from 70.49% to 69.94%when 𝜏+ changes from 1 to 5. This is because,

over a longer time window, the graph’s structure changes more

significantly, causing more samples to be mistakenly identified

as positive. This supports the importance of sampling positive

and negative pairs based on topological information, as it proves

beneficial for enhancing correct sampling.
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Figure 4: Hyperparameter analysis.

4.6 Hyperparameter Analysis
We further analyze the hyperparameter sensitivity of IDOL. The

experimental results on Arxiv dataset are reported and we have

similar observations on the other datasets.

Threshold 𝑟𝑏𝑚𝑎𝑥 and 𝜆 in Dynamic Sampling. To achieve

topology-monitorable sampling, we employ 𝑟𝑏𝑚𝑎𝑥 as the early-stopping

threshold in the Reverse Push algorithm and further utilize an

empirical gap value 𝜆 to distinguish the positive samples from

historical embeddings. As shown in Figure 4(a), we present the

average accuracy on Arxiv by varying the values of 𝑟𝑏𝑚𝑎𝑥 and 𝜆 as

{0.5/log𝑛, 1/log𝑛, 2/log𝑛, 5/log𝑛, 10/log𝑛} and {0.5/𝑛, 1/𝑛, 2/𝑛,
5/𝑛, 10/𝑛}, respectively. It is observed that various settings typically
do not significantly affect IDOL, as IDOL consistently delivers its

best performance using our default configuration.

Hidden size and pretraining epoch. We investigate the IDOL

variants with different hidden sizes and pretraining epochs, as illus-

trated in Figure 4(b). For a fair comparison, we start this study based

on the default setting of the hidden size and epoch number (e.g., 1024

and 1) in the aforementioned experiments. When the hidden size

exceeds 512, the results tend to converge closely. However, reducing

the hidden size to 128 leads to a notable decline in classification

performance. The reason might be that low-dimensional hidden

vectors cannot effectively represent large-scale graph information.

Furthermore, we can naturally produce a better performance by

utilizing more epochs. Since a longer pretraining period will further

decrease L𝐼𝐷𝑂𝐿 , which enhances the prediction accuracy of the

downstream task.

5 CONCLUSION
In this paper, we propose IDOL, a first-ever topology-monitorable

contrastive learning framework focusing on dynamic graphs. Given

the graph updates, IDOL employs PPR-based techniques to incre-

mentally update node embeddings and uses a strategy that monitors

topology changes to select positive and negative pairs. Besides, we

employ a simplified training paradigm and provide a performance

guarantee by bridging the contrastive loss and the downstream

task loss. In terms of time efficiency and prediction accuracy, we

conduct extensive experiments on various graph datasets and verify

that IDOL is superior to state-of-the-art methods.
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A APPENDIX
A.1 Summary of Notations
The main notations used in this paper and their descriptions are

summarized in Table 8.

Table 8: Frequently used notations in this paper.

Notations Descriptions

G𝑖 = (V𝑖 , E𝑖 ) Directed graph after 𝑖 edge updates

𝑛,𝑚 Numbers of nodes and edges in the current graph

𝐹 Dimension of the node attribute

𝐾 The layer of graph propagation

𝑿 The node attribute matrix and 𝑿 ∈ R𝑛×𝐹

𝒙𝑖 The attribute vector of the 𝑖-th dimension and

𝒙𝑖 ∈ R𝑛×1

N𝑜𝑢𝑡 (𝑣),N𝑖𝑛 (𝑣) The out-neighbors and in-neighbors of 𝑣

𝒀 The label set, where the element 𝑦𝑖 ∈ R
𝑒𝑖 = {𝑢𝑖 , 𝑣𝑖 } The 𝑖-th update event related to node 𝑢𝑖 and 𝑣𝑖

𝜋 (𝐺𝑖 , 𝑠, 𝑡 ) PPR of node 𝑡 from the source node 𝑠 in graph

𝐺𝑖

𝒓𝑖 Residue vector of the 𝑖-th dimension and 𝒓𝑖 ∈
R𝑛×1

𝒉𝑖 Reserve vector of the 𝑖-th dimension and 𝒉𝑖 ∈
R𝑛×1

𝒛𝑠 The node embedding vector of node 𝑠 and 𝒛𝑠 ∈
R1×𝐹

−𝒛𝑠 ,+ 𝒛𝑠 The negative and positive sample vectors of node

𝑠 and −𝒛𝑠 ,+ 𝒛𝑠 ∈ R1×𝐹

𝛼 Teleport probability of random walks

𝑟𝑏𝑚𝑎𝑥 Threshold in Reverse Push

A.2 More Related Work
A.2.1 Dynamic Graph Representation Learning. There exist two
major types of approaches, including the methods focusing on

DTDG and CTDG.

Discrete-Time Dynamic Graph. Representation learning over

dynamic graphs primarily focused on discrete-time dynamic graphs

(DTDGs), which are represented by a series of graph snapshots cap-

tured at discrete time points. Literature on DTDGs has been exten-

sively studied due to ease of implementation. Many architectures

for DTDGs are based on combining static GNNs with sequence

models, such as recurrent neural networks (RNNs), which can be

applied recurrently to the network parameters [47], hierarchical

node states [66], or to a set of embeddings encoded from each graph

snapshot [35]. Another line of research involves performing tem-

poral random walks on graph snapshots to obtain dynamic node

representations [53, 68].

Continuous-Time Dynamic Graph. Although DTDG meth-

ods have proven a powerful tool in learning the low-dimensional

node representations for dynamic graphs, one limitation is their

difficulty in capturing fine-grained temporal dynamics and contin-

uous changes in the evolving structure. Recently, continuous-time

dynamic graphs (CTDGs) have been widely studied, which consider

graphs where the temporal evolution is modeled as a continuous

process. Early works employ self-attention mechanisms to learn a

dynamic node representation by attending over its neighbors and

historical representations [56, 63]. Sequence models are also promis-

ing methods for CTDGs. For example, JODIE [33] and TGN [51] use

RNNs to propagate messages across interactions to update node rep-

resentations. In addition, temporal point processes (TPP) are applied

for modeling continuous-time event sequences [40, 57, 79]. Unlike

prior methods that recompute node embeddings from scratch for

each prediction in dynamic scenarios, our approach utilizes incre-

mental computation, optimizing both computation efficiency and

memory usage.

A.2.2 GraphContrastive Learning. Graph contrastive learning lever-
ages the concept of positive and negative samples combined with a

discrimination rule to learn the representation of nodes, capturing

statistical dependencies and enhancing the meaningful patterns

from graphs. DGI [58] is the first approach to maximize the mutual

information between the node embeddings and graph embeddings,

which enables the graph encoder to learn both local and global

information. BYOL [15] and BGRL[55] attempt to get rid of the

high overhead for sampling negative pairs and achieve promising

performance when only utilizing positive pairs. GGD[72] simplifies

the loss computation of DGI and conducts the pretraining only with

a few epochs. Lastly, DDGCL[56] aims to capture the dynamics in

the graphs and accommodate the temporal information during the

process of positive sampling.

Due to such label scarcity, graph contrastive learning can also

be used to improve the model quality by enhancing the consis-

tency of different augmentation views. GRAND [13] generates dif-

ferent augmentation views of the graph by dropping nodes and

masking features, and then the mutual information of the scarce

labeled nodes based on different views is minimized to enhance the

prediction performance. NASA [7] randomly replaces the 1-hop

neighbors with 2-hop neighbors for the labels nodes and use a

neighbor-constrained regularization to improve the consistency of

adjacent nodes.

Table 9: Parameter settings. Here "lr" means the learning
rate, "𝐾" means the number of convolution layers, "hidden"
means the hidden size of the network, and "batch number"
means the number of neighbor sampling.

Datasets lr 𝐾 hidden batch number

Arxiv 1e-3 4 1024 12

Mag 1e-3 4 512 12

Products 1e-3 4 512 12

Patent 1e-3 4 512 12

A.3 Experiment Settings and Extral results
We summarize the experimental setting of all baseline in Table 9.

To provide enough comparison with the baselines, we employ the

batched processing with neighbour sampling on GCN, SGC, DGI

and GGD when processing on Mag, Products and Patent datasets.
We keep the same setting with the common parameters like learn-

ing rate, K, hidden size. Following the work in [72], we set the

pretraining epoch of IDOL and GGD as 1, and the epoch number

of others is set as 200.
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