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Abstract Recent advances in data processing have stimu-
lated the demand for learning graphs of very large scales.
Graph Neural Networks (GNNs), being an emerging and
powerful approach in solving graph learning tasks, are known
to be difficult to scale up. Most scalable models apply node-
based techniques in simplifying the expensive graph message-
passing propagation procedure of GNNs. However, we find
such acceleration insufficient when applied to million- or
even billion-scale graphs. In this work, we propose SCARA,
a scalable GNN with feature-oriented optimization for graph
computation. SCARA efficiently computes graph embedding
from the dimension of node features, and further selects and
reuses feature computation results to reduce overhead. The-
oretical analysis indicates that our model achieves sub-linear
time complexity with a guaranteed precision in propagation
process as well as GNN training and inference. We conduct
extensive experiments on various datasets to evaluate the ef-
ficacy and efficiency of SCARA. Performance comparison
with baselines shows that SCARA can reach up to 800×
graph propagation acceleration than current state-of-the-art
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methods with fast convergence and comparable accuracy.
Most notably, it is efficient to process precomputation on
the largest available billion-scale GNN dataset Papers100M
(111M nodes, 1.6B edges) in 13 seconds.

Keywords Graph neural networks · Personalized PageR-
ank · Graph attribute optimization · Scalability

1 Introduction

Recent years have witnessed the burgeoning of online ser-
vices based on data represented by graphs, which leads to a
rapid increase in the amount and complexity of such graph
data. Graph Neural Networks (GNNs) are specialized neural
models designed to represent and process graph data, and
have achieved strong performance on graph understanding
tasks such as node classification [18, 21, 8, 12], link predic-
tion [34, 48, 45, 37], and community detection [35, 1, 11].

One of the most widely adopted GNN designs is the
Graph Convolutional Network (GCN) [21] which learns
graph representations by leveraging information of topologi-
cal structure. Specifically, a GCN represents each node state
by a feature vector, successively propagates the state to neigh-
boring nodes, and updates the neighbor features using a neu-
ral network. This interleaved process of graph propagation
and state update can proceed for multiple iterations.

While being able to effectively gather state information
from the graph structure, GCNs are known to be resource-
demanding, which implies limited scalability when deployed
to large-scale graphs [43, 50]. It is also non-trivial to fit the
node features of large graphs into the memory of hardware
accelerators like GPUs. However, it is increasingly demand-
ing to apply these effective models to modern real-world
graph datasets. Recent studies have attempted to learn rep-
resentations of large graphs such as the Microsoft Academic
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Graph (MAG) with 100 million entries [31, 44]. Nonethe-
less, directly fitting the basic GCN model to such data would
easily cause unacceptable training time or out-of-memory
error. Hence, how to adopt the GCN model efficiently to
these very large-scale graphs while benefiting from its per-
formance becomes a challenging yet important problem in
realistic applications.

Existing Approaches are Not Scalable Enough. Several
techniques have been proposed towards more efficient learn-
ing for GNN, addressing the scalability issues. One optimiza-
tion is to decouple graph propagation from feature learning
and employ simple model structures to speed up computation
[41, 22], which frees the GPU memory from storing entire
graph data and reduces the memory footprint. Such methods
typically integrate graph data management techniques such
as Personalized PageRank [30] to calculate the graph repre-
sentation used in the model. Another direction is easing node
interdependence, which enables training on smaller batches
and is achieved by neighbor sampling [18, 9], layer sam-
pling [8, 16], and subgraph sampling [12, 46, 20]. Various
sampling schemes have been applied to restrain the number
of nodes contained in GNN learning pipelines and reduce
computational overhead. Other algorithms are also utilized
in simplifying graph propagation and learning in order to
improve efficiency and efficacy, including diffusion [22, 4],
self-attention [34, 33, 47], and quantization [15].

Unfortunately, such methods are nevertheless not effi-
cient enough when applied to million-scale or even larger
graphs. According to [36], the very recent state-of-the-art al-
gorithm GBP [10] typically consumes more than 104 seconds
solely for precomputation on the Papers100M graph (111M
nodes, 1.6B edges, generated from MAG) to reach proper ac-

(a) Learning Time (b) RAM Usage

Fig. 1: Scalability of GNN models on different real-world
datasets. (a) The model learning time increases with the scale
of graph edges, where solid and dashed lines are transductive
and inductive learning, respectively. (b) The model memory
usage increases with the scale of graph nodes. Note that both
axes are on a log scale.

curacy. In our experiments, the same model even exceeds the
192GB RAM bound on a single worker during processing.
As shown in Fig. 1, the time and memory expense of current
approaches increases rapidly to a prohibitive level when the
graph scales up. Such cost caused by the limited scalability
hinders their application in practice.

Our Contributions. In this paper, we propose SCARA, a
SCAlable gRaph neural network Algorithm with low time
complexity and high scalability on very large datasets. On
the theoretical side, the time complexity of SCARA for pre-
computation/training/inference matches the same sub-linear
level with the state of the art, as shown in Table 1. On the
practical side, to our knowledge, SCARA is the first GNN
algorithm that can be applied to the billion-edge graph Pa-
pers100M with a precomputation time less than 13 seconds
and complete training under a relatively strict memory limit.

Particularly, SCARA employs several feature-oriented
optimizations. First, we observe that most current scalable
methods repetitively compute the graph propagation infor-
mation from the node-based dimension, which results in
complexity at least proportional to the number of graph
nodes. To address this issue, we design a Feature-Push
method that realizes the information propagation from the
feature vectors, which removes the linear dependency on the
number of nodes in the complexity while maintaining the
same precision of corresponding graph propagation values.
Second, as we mainly process the feature vectors, we discover
that there is significant room to reuse the computation re-
sults across different feature dimensions. Hence we propose
the Feature-Reuse algorithm. Through combining calcula-
tion results, SCARA efficiently adopts several feature-based
vector optimizations and prevents time-consuming repeti-
tive propagation. By such designs, SCARA outperforms all
leading competitors in our experiments in all 6 GNN learn-
ing tasks in regard to model convergence time, i.e., the sum
of precomputation and training time, with highly efficient
inference speed, significantly better memory overhead, and
comparable or better accuracy.

In summary, we have made the following contributions1:
– We present the Feature-Push algorithm which propa-
gates the graph information from the feature vectors with
forward push and random walk. Our method achieves a sub-
linear complexity for precomputation running time along
with efficient model training and inference implemented in
the mini-batch approach.
– We propose the Feature-Reuse mechanism, which uti-
lizes the feature-oriented optimizations to further improve
the efficiency of feature propagation while maintaining pre-
cision. The technique reduces the precomputation overhead
of sole Feature-Push by approximately 4×.

1 The source code and data used in the paper have been made avail-
able at: https://github.com/gdmnl/SCARA-PPR

https://github.com/gdmnl/SCARA-PPR
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– We conduct comprehensive experiments to evaluate the
efficiency and effectiveness of the SCARA model on various
datasets and against benchmark methods. Our model is time-
and memory-efficient enough to process the billion-scale
dataset Papers100M. It also achieves up to 800× faster in
precomputation time than the current state of the art.

Comparison with the conference version [25]. We have
made the following new contributions:
– We propose a novel Feature-Reuse algorithm, which is
now formulated as an optimization problem and provided
with an efficient feature-oriented solution for calculation in-
tegrating all features. Experiments in Section 4.5 demon-
strate that the current approach is up to 4× faster and pro-
duces less approximation error.
– We empower the method with efficient parallel computa-
tion capabilities, mainly thanks to the Feature-Reuse al-
gorithm conducting the majority of the resource-intensive
computations in a feature-oriented manner. As shown in Sec-
tion 4.4, parallelism brings over 10× speed-up compared with
the former single-worker version.
– We enhance the theoretical analysis on feature PPR ap-
proximation precision for our methodology in Section 3,
including detailed elaboration on the precision control strate-
gies, and complete proofs of Lemma 2 and Lemma 3 for the
updated Feature-Reuse on its precision guarantee.
– We update our experimental settings to incorporate paral-
lelization and rerun all evaluations to align with these new
settings. Furthermore, we present additional experiments and
discussions on the impact of model parameters, parallel pro-
cessing, and reuse schemes in Section 4.

Paper Organization. The rest of the paper is organized as
follows. Section 2 introduces the preliminaries of GNN and
relative scalable methods. We present a thorough analysis on
the time and memory complexities of these models. Then we
propose our SCARA framework in Section 3 based on the
concept of feature PPR, introducing the Feature-Push and
Feature-Reuse algorithms as well as the precision guaran-
tees. Experimental results are presented in Section 4, includ-
ing evaluations and discussions on efficacy, efficiency, and
convergence. Finally, we summarize the paper in Section 5.

2 Preliminaries and Related Works

Notations. Consider a graph 𝐺 = ⟨𝑉 , 𝐸⟩ with node set 𝑉
and edge set 𝐸. We assume the graph is self-looped [21], that
an edge is connected to the node itself for each node in 𝑉 .
Let 𝑛 = |𝑉 |,𝑚 = |𝐸 |, and 𝑑 = 𝑚/𝑛. The graph connectivity
is represented by the adjacency matrix 𝑨 ∈ R𝑛×𝑛 , while the
diagonal degree matrix is 𝑫 ∈ R𝑛×𝑛 . Following [10, 36],
we normalize the adjacency matrix by 𝑫 with convolution
coefficient 𝑟 ∈ [0, 1] as �̃� (𝑟 ) = 𝑫𝑟−1𝑨𝑫−𝑟 . For each node 𝑣 ∈
𝑉 , denote the set of the out-neighbors byN(𝑣) = {𝑢 | (𝑣,𝑢) ∈

𝐸}, and the out-degree of 𝑣 by 𝑑 (𝑣) = |N (𝑣) |. Each 𝑣 has an
𝐹 -dimension feature vector 𝒙 (𝑣), which composes the matrix
𝑿 ∈ R𝑛×𝐹 .

A GNN recurrently computes the node representation
matrix 𝑯 (𝑙 ) as current state in the 𝑙-th layer. The model input
feature matrix is 𝑯 (0) = 𝑿 in particular. For a conventional
𝐿-layer GCN [21], the (𝑙 +1)-th representation matrix 𝑯 (𝑙+1)

is updated as:

𝑯 (𝑙+1) = 𝜎
(
�̃�𝑯 (𝑙 )𝑾 (𝑙 )

)
, 𝑙 = 0, 1, · · · , 𝐿 − 1, (1)

where 𝑾 (𝑙 ) is the trainable weight matrix of the 𝑙-th layer,
�̃� = �̃� (1/2) is the normalized adjacency matrix, and 𝜎 (·) is
the activation function such as ReLU or softmax. For analysis
simplicity we keep the feature size 𝐹 unchanged in all layers.

Summarized in Table 1, we present an analysis on the
complexity bounds of GCN in Equation (1) to explain the
restraints of its efficiency. One dominating part of the learn-
ing overhead is the training phase, where the model weights
𝑾 (𝑙 ) are iteratively updated for 𝐼 epochs and thence resource-
intensive. For the 𝐿-layer GCN model training per epoch, it
can be typically divided into two consecutive procedures
of matrix multiplications: Graph propagation computes the
product �̃�𝑯 (𝑙 ) , and is bounded by a complexity of 𝑂 (𝐿𝑚𝐹 )
giving the adjacency matrix �̃� with𝑚 entries and the propa-
gation is conducted for 𝐿 iterations. The overhead for the sec-
ond procedure feature transformation by multiplying𝑾 (𝑙 ) is
𝑂 (𝐿𝑛𝐹 2). As discovered by previous studies [12, 10], the
dominating term is 𝑂 (𝐿𝑚𝐹 ) when the graph is large, while
the latter transformation can be accelerated by GPU compu-
tation. Hence, the full graph propagation becomes the scala-
bility bottleneck.

In the inference phase, the model performs a similar for-
ward inference, hence resulting in the same time complexity
of 𝑂 (𝐿𝑚𝐹 + 𝐿𝑛𝐹 2). In terms of memory usage, the GCN
typically takes 𝑂 (𝐿𝑛𝐹 + 𝐿𝐹 2) space to store layer-wise node
representations and weight matrices respectively.

Post-Propagation Model. As the graph propagation pos-
sesses the major computation overhead when the graph is
scaled-up, a straightforward idea is to simplify this step and
prevent it from being repetitively included in each layer. Such
approaches are regarded as propagation decoupling models
[49, 23, 40]. We further classify them into post- and pre-
propagation variants based on the presence stage of propa-
gation relative to feature transformation.

The post-propagation decoupling methods apply propa-
gation only on the last model layer, enabling efficient and
individual computation of the graph propagation matrix, as
well as the fast and simple model training. The APPNP model
[22] introduces the personalized PageRank (PPR) [30] algo-
rithm in the propagation stage. The iterative graph propaga-
tion in the GCN updates is replaced by multiplying the PPR



4 Liao et al.

Table 1: Time and memory complexities of scalable GNN models. Precomputation memory complexity indicates the usage
of intermediate variables, while the training and inference memory refers to the GPU usage for storing and updating
representation and weight matrices in each training iteration. The training and inference time complexities represent the
forward-passing computation on the training and inference node set. Models including GCN and GraphSAINT do not have
an explicit precomputation stage, which are marked as “–”.

Model Precomp. Mem. Training Mem. Inference Mem. Precomp. Time Training Time Inference Time
GCN [21] – 𝑂 (𝐿𝑛𝐹 + 𝐿𝐹 2 ) 𝑂 (𝐿𝑛𝐹 + 𝐿𝐹 2 ) – 𝑂 (𝐼𝐿𝑚𝐹 + 𝐼𝐿𝑛𝐹 2 ) 𝑂 (𝐿𝑚𝐹 + 𝐿𝑛𝐹 2 )

GraphSAINT [46] – 𝑂 (𝐿2𝑏𝐹 + 𝐿𝐹 2 ) 𝑂 (𝐿𝑛𝐹 + 𝐿𝐹 2 ) – 𝑂 (𝐼𝐿2𝑛𝐹 + 𝐼𝐿𝑛𝐹 2 ) 𝑂 (𝐿𝑚𝐹 + 𝐿𝑛𝐹 2 )
GAS [16] 𝑂 (𝐿𝑛𝐹 ) 𝑂 (𝐿𝑑𝑏𝐹 + 𝐿𝐹 2 ) 𝑂 (𝐿𝑑𝑏𝐹 + 𝐿𝐹 2 ) 𝑂 (𝑚 + 𝐿𝑛𝐹 ) 𝑂 (𝐼𝐿𝑚𝐹 + 𝐼𝐿𝑛𝐹 2 ) 𝑂 (𝑛𝐹 )

APPNP [22] 𝑂 (𝑚) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 + 𝑑𝑏 ) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 + 𝑑𝑏 ) 𝑂 (𝑚) 𝑂 (𝐼𝑇𝑚𝐹 + 𝐼𝐿𝑛𝐹 2 ) 𝑂 (𝑇𝑚𝐹 + 𝐿𝑛𝐹 2 )
PPRGo [5] 𝑂 (𝑛/𝑟𝑚𝑎𝑥 ) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 +𝐾𝑏 ) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 +𝐾𝑏 ) 𝑂 (𝑚/𝑟𝑚𝑎𝑥 ) 𝑂 (𝐼𝐾𝑛𝐹 + 𝐼𝐿𝑛𝐹 2 ) 𝑂 (𝐾𝑛𝐹 + 𝐿𝑛𝐹 2 )
SGC [41] 𝑂 (𝑚) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 ) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 ) 𝑂 (𝐿𝑚𝐹 ) 𝑂 (𝐼𝐿𝑛𝐹 2 ) 𝑂 (𝐿𝑛𝐹 2 )
GBP [10] 𝑂 (𝑛𝐹 ) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 ) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 ) 𝑂 (𝐿𝐹

√︁
𝐿𝑚 log(𝐿𝑛)/𝜖 ) 𝑂 (𝐼𝐿𝑛𝐹 2 ) 𝑂 (𝐿𝑛𝐹 2 )

SCARA (ours) 𝑂 (𝑛𝐹 ) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 ) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 ) 𝑂 (𝐹
√︁
𝑚 log𝑛/𝜆) 𝑂 (𝐼𝐿𝑛𝐹 2 ) 𝑂 (𝐿𝑛𝐹 2 )

matrix after the feature transformation layers:

𝑯 (𝑙+1) = 𝜎
(
𝑯 (𝑙 )𝑾 (𝑙 )

)
, 𝑙 = 0, 1, · · · , 𝐿 − 2, (2)

𝑯 (𝑙+1) = 𝜎
(
�̂�𝑯 (𝑙 )𝑾 (𝑙 )

)
, 𝑙 = 𝐿 − 1, (3)

where �̂� =
∑𝐿
𝑙=0 𝛼 (1 − 𝛼)𝑙 �̃�𝑙 is the PPR matrix.

In this design, the feature transformation benefit from
the mini-batch scheme in both training and inference stages,
hence reducing the demand for GPU memory. In Table 1,
the batch size is 𝑏. Regarding computation speed, a 𝑇 -round
Power Iteration computation on the PPR matrix [30] leads
to 𝑂 (𝑇𝑚𝐹 + 𝐿𝑛𝐹 2) time per epoch. The PPRGo model [5]
further improves the efficiency of precomputing the PPR
matrix 𝚷 by the Forward Push algorithm [2, 3] with an error
threshold 𝑟𝑚𝑎𝑥 and only records the top-𝐾 entries. However,
it demands 𝑂 (𝑛/𝑟𝑚𝑎𝑥 ) space to store the dense PPR matrix.

Pre-Propagation Model. Another line of research, namely
the pre-propagation models such as SGC [41], chooses to
propagate graph information in advance and encode it to the
attributes matrix 𝑿 , forming an embedding matrix 𝑷 that is
utilized as the input feature to the neural network layers. In a
nutshell, we summarize the model updates in the following
scheme:

𝑯 (0) = 𝑷 =

𝐿𝑃∑︁
𝑙=0

𝑎𝑙 �̃�
𝑙
(𝑟 ) · 𝑿 , (4)

𝑯 (𝑙+1) = 𝜎
(
𝑯 (𝑙 )𝑾 (𝑙 )

)
, 𝑙 = 0, 1, · · · , 𝐿 − 1, (5)

where 𝐿𝑃 denotes the depth of precomputed propagation and
𝑎𝑙 is the layer-dependent diffusion weight.

The line of Equation (4) corresponds to the precomputa-
tion section and is calculated only once for each graph. The
complexity of this stage is solely related to the precomputa-
tion techniques applied in the model. In SGC, the equation
is given by an 𝐿-hop multiplication of 𝑷 = �̃�𝐿𝑿 , taking
𝑂 (𝐿𝑚𝐹 ) time. A recent work GBP [10] employs a PPR-
based bidirectional propagation with 𝐿𝑃 = 𝐿 and tunable 𝑎𝑙

and 𝑟 . Under an approximation of relative error 𝜖, it improves
precomputation complexity to 𝑂 (𝐿𝐹

√︁
𝐿𝑚 log(𝐿𝑛)/𝜖) in the

best case. It is notable that since GBP contains a node-based
traverse scheme, it is sensitive to the scale of 𝑛 in practice.

Equation (5) follows the neural network feature trans-
formation, taking 𝑷 as input feature. Compared to Equa-
tion (3), it completely removes the need for additional mul-
tiplication, hence both training and inference are reduced
to 𝑂 (𝐿𝑛𝐹 2). The simple GNN provides scalability in both
resource-demanding training and frequently-queried infer-
ence, with the ease to employ techniques such as mini-batch
training, parallel computation, and data augmentation.

Other Methods. There is a large scope of GNNs related to
sampling techniques, which still possess the iterative prop-
agation, but simplifies it by replacing the full-batch graph
updates with selected nodes in mini-batches. The represen-
tatives are GraphSAGE [18] performing layer-wise sampling
and GraphSAINT [46] exploiting multiple levels of informa-
tion. Specifically, the efficiency-oriented variant GraphSAINT-
RW incorporates 𝐿-hop random walk graph sampling, result-
ing in a total training complexity of 𝑂 (𝐿2𝑛𝐹 + 𝐿𝑛𝐹 2). It is
however not applicable in the full graph inference stage, caus-
ing the inference time and memory overheads to be identical
to the vanilla GCN. GAS [16] samples layer-wise neighbors
and consumes great memory for historical embedding. It has
𝑂 (𝐿𝑚𝐹 + 𝐿𝑛𝐹 2) training overhead, while the optimal infer-
ence complexity is benefited by the cached embedding.

In our experiments, we compare our GNN algorithm
with the state-of-the-art scalable models from each of the
aforementioned categories, to demonstrate the scalability and
effectiveness of our algorithm.

3 SCARA Framework

We propose our SCARA framework composing Feature-
Push and Feature-Reuse. The Feature-Push algorithm
conducts graph propagation from the aspect of features,



Scalable Decoupling Graph Neural Network with Feature-Oriented Optimization 5

while Feature-Reuse is a novel technique that reuses columns
in the feature matrix. We also present analysis on the algo-
rithmic complexity and precision guarantee to demonstrate
the theoretical validity and effectiveness of SCARA.

3.1 Overview

To realize scalability in the network training and inference
stage, and to better employ advanced Personalized PageRank
(PPR) algorithms to optimize graph diffusion, we apply the
backbone of propagation decoupling approach in our GNN
design. Similar to previous pre-propagation models [41, 10],
in precomputation stage we follow the idea of Equation (4) to
compute the graph information 𝑷 in advance together with
the node attributes 𝑿 . Then, a simple yet effective feature
transformation is conducted as given in Equation (5). We en-
hance the model structure by incorporating skip connections
[22] and dense connections [10] in every intermediate layers.

Since the propagation stage is the complexity bottleneck
as mentioned earlier, we focus on reducing its computation
complexity. We derive Equation (4) in our propagation as:

𝑷 =

∞∑︁
𝑙=0

𝛼 (1 − 𝛼)𝑙 �̃�𝑙(𝑟 ) · 𝑿 =

∞∑︁
𝑙=0

𝛼 (1 − 𝛼)𝑙
(
𝑫𝑟−1𝑨𝑫−𝑟

)𝑙
𝑿 ,

(6)

where 𝛼 is the teleport probability as we set 𝑎𝑙 = 𝛼 (1 −
𝛼)𝑙 to be associated with the form in the PPR calculation.
Compared with APPNP and PPRGo, we adopt a generalized
graph adjacency �̃� (𝑟 ) with an adjustable convolution factor
𝑟 ∈ [0, 1] to fit different scales of graphs.

Our computation of Equation (6) is displayed in Algo-
rithm 1 (Feature-Push) and explained in detail in Sec-
tion 3.2. The highlight of Feature-Push is the application of
propagating from features, which differs from prior works.
In many real-world tasks, when a graph is scaled-up, its
numbers of nodes (𝑛) and edges (𝑚) increase, but the node
attributes dimension (𝐹 ) usually remains unchanged. Thus,
an algorithm with complexity mainly dependent on 𝐹 enjoys
better scalability than those dominated by 𝑛 or𝑚.

As the attribute matrix 𝑿 is included in our computation,
we then investigate how to fully utilize its implicit infor-
mation to further accelerate our algorithm, which leads to
the Algorithm 2 (Feature-Reuse). The motivation is to re-
duce the expensive iterative computation of 𝑷 components
by exploiting the previous results based on attribute vectors
𝒙 on selected dimensions 𝑓 . We apply a linear combination
scheme with precision guarantee to lighten the constraints
of Algorithm 1 while improving speed. We further describe
this methodology in Section 3.3.

3.2 Feature-Push

Examining Equation (6), the embedding matrix 𝑷 is the com-
position of graph diffusion matrix �̃� (𝑟 ) and node attributes
𝑿 . Most scalable methods such as APPNP [22] and SGC
[41] compute the propagation part separately from network
training, resulting in a complexity at least proportional to
edge size𝑚. GBP [10] discusses a bidirectional propagation
with both node-side random walk on 𝑫−1𝑨 and feature-side
reverse push on 𝑫−𝑟𝑿 . Although the random walk step en-
sures precision guarantee, it requires long running time when
not being accelerated by other methods [39, 38, 29].

We propose the Feature-Push approach that propagates
graph information from the feature dimension, which is capa-
ble to utilize efficient single-source PPR algorithms through
a simple but surprisingly effective transformation. Note that
the graph propagation term in Equation (6) can be written as
the following to rearrange the normalization order:

�̃�𝑙(𝑟 ) · 𝑿 =

(
𝑫𝑟−1𝑨𝑫−𝑟

)𝑙
𝑿 = 𝑫𝑟−1

(
𝑨𝑫−1

)𝑙
𝑫1−𝑟𝑿 . (7)

Here, given the normalized features𝑫1−𝑟𝑿 , single-source
PPR algorithms can be alternated to efficiently propagate in-
formation with

(
𝑨𝑫−1)𝑙 , one feature vector each time, with-

out doing the actual iterative matrix multiplications. In order
to better derive Feature-Push, we borrow the Personalized
PageRank (PPR) notations to describe our technique manip-
ulating feature vectors. On a graph 𝐺 , given a source node
𝑠 ∈ 𝑉 and a target node 𝑡 ∈ 𝑉 , the PPR 𝜋 (𝑠, 𝑡) represents the
probability of a random walk with teleport factor 𝛼 ∈ (0, 1)
which starts at node 𝑠 and stops at 𝑡 . In general, forward PPR
algorithms, often categorized as single-source PPR, start the
computation from 𝑠, contrasted to backward or reverse alter-
natives that are developed from 𝑡 [36].

When the PPR calculation is integrated with features, it
shares similarities in forms but with a different interpretation.
Consider the PPR problem with regard to nodes in a set
𝑈 ⊆ 𝑉 as the source nodes. Let 𝑛𝑈 be the size of set 𝑈 . We
call an𝑛𝑈 -dimension vector𝒙 with sum of elements ∥𝒙 ∥1 = 1
as a feature vector. In our context, the feature PPR 𝜋 (𝒙; 𝑡)
represents the PPR for feature vector 𝒙, and can be defined as
the probability of the event that a random walk which starts
at a node 𝑠 ∈ 𝑈 with probability distribution 𝒙 and stops at 𝑡 .
It can be derived from the definition that, each feature PPR
𝜋 (𝒙; 𝑡) can be interpreted as a generalized integration of a
series of the common single-source PPR value 𝜋 (𝑠, 𝑡) with
the source node 𝑠 being any arbitrary nodes in 𝑈 . Hence the
properties and operations of common PPR are still valid.

The notation can be extended to the matrix form when
computing multiple features. Let 𝐹 be the number of feature
vector. The feature matrix is 𝑿 = [𝒙1, · · · , 𝒙𝐹 ] of shape
𝑛𝑈 × 𝐹 and 𝒙 𝑓 (1 ≤ 𝑓 ≤ 𝐹 ) is the 𝑓 -th column fea-
ture vector. Correspondingly, the embedding matrix is 𝑷 =
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[𝝅1, · · · , 𝝅𝐹 ], where 𝝅𝑓 = 𝝅 (𝒙 𝑓 ) is the 𝑓 -th column of
PPR vector computed from feature 𝒙 𝑓 , and is composed
by 𝝅𝑓 =

(
𝜋 (𝒙 𝑓 ; 𝑡1), · · · , 𝜋 (𝒙 𝑓 ; 𝑡𝑛𝑈 )

)⊤ on all nodes. Calcu-
lating 𝑷 from feature 𝑿 is achieved by separately applying
Feature-Push on each feature vector, which is exactly the
implication of Equation (6). Now that the feature PPR is
explained, we here look into its calculation. We define the
problem of feature PPR approximation:

Definition 1 (Approximate Feature PPR) Given an abso-
lute error bound 𝜆 > 0, a PPR threshold 0 < 𝛿 < 1, and a
failure probability 0 < 𝜙 < 1, the approximate PPR query
for feature vector 𝒙 computes an estimation 𝜋 (𝒙; 𝑡) for each
𝑡 ∈ 𝑈 with 𝜋 (𝒙; 𝑡) > 𝛿 , such that with probability at least
1 − 𝜙 ,

|𝜋 (𝒙; 𝑡) − 𝜋 (𝒙; 𝑡) | ≤ 𝜆. (8)

Recognizing that GNNs require less precise propagation
information to achieve proper performance [51, 32], the ap-
proximate feature PPR enables employing efficient computa-
tion based on forward PPR algorithms without loss in even-
tual model effectiveness [39, 42]. We employ a scalable algo-
rithm Feature-Push to compute the embedding matrix com-
bining Forward Push [3] and Random Walk techniques that
both operate feature vectors. The algorithm makes use of both
approaches, that random walk is accurate but less efficient,
while forward push is fast with a loose precision guarantee.
Algorithms exploiting such combination have been the state
of the arts in various PPR benchmarks [39, 26]. We high-
light that the differences between Algorithm 1 and [39, 26]
are three-fold. First, the push starts from the feature vector,
which can be seen as a generalized PPR operation taking

Algorithm 1 Feature-Push
Input: Graph 𝐺 , node set𝑈 , feature vector 𝒙, probability 𝛼 , con-

volution factor 𝑟 , push parameter 𝛽
Output: Approximate embedding vector �̂� (𝒙)

1 for all 𝑢 ∈ 𝑈 do
2 𝑟 ′ (𝒙;𝑢) ← 𝑥 (𝑢) · 𝑑 (𝑢)1−𝑟
3 𝑟 (𝒙;𝑢) ← 𝑟 ′ (𝒙;𝑢)/∑𝑢∈𝑈 𝑟 ′ (𝒙;𝑢)
4 𝜋 (𝒙; 𝑡) ← 0 for all 𝑡 ∈ 𝑈
5 while exist 𝑢 ∈ 𝑈 such that 𝑟 (𝒙;𝑢) > 𝑟𝑚𝑎𝑥/𝑑 (𝑢) do
6 for all 𝑣 ∈ N (𝑢) do
7 𝑟 (𝒙; 𝑣) ← 𝑟 (𝒙; 𝑣) + (1 − 𝛼) · 𝑟 (𝒙;𝑢)/𝑑 (𝑢)
8 𝜋 (𝒙;𝑢) ← 𝜋 (𝒙;𝑢) + 𝛼 · 𝑟 (𝒙;𝑢)
9 𝑟 (𝒙;𝑢) ← 0

10 𝑟𝑠𝑢𝑚 ←
∑
𝑢∈𝑈 𝑟 (𝒙;𝑢), 𝑁𝑊 ← 𝑟𝑠𝑢𝑚/𝛽

11 for all 𝑢 ∈ 𝑈 such that 𝑟 (𝒙;𝑢) ≠ 0 do
12 Perform 𝑟 (𝒙;𝑢 )

𝑟𝑠𝑢𝑚
· 𝑁𝑊 random walks from 𝑢

13 for all random walk stopping at 𝑡 do
14 𝜋 (𝒙; 𝑡) ← 𝜋 (𝒙; 𝑡) + 𝑟𝑠𝑢𝑚/𝑁𝑊
15 𝜋 (𝒙; 𝑡) ← 𝜋 (𝒙; 𝑡) · 𝑑 (𝑡)𝑟−1 for all 𝑡 ∈ 𝑈
16 return �̂� (𝒙) ←

(
𝜋 (𝒙; 𝑡1), · · · , 𝜋 (𝒙; 𝑡𝑛𝑈 )

)⊤

Fig. 2: Illustration of the Feature-Push process. The in-
put feature vector is transformed into the residue vector
through normalization. Feature-Push performs two con-
secutive steps, namely Forward Push on Feature Value and
Random Walk on Feature Residue, to acquire the approxi-
mate feature PPR vector, which is output as the embedding
after further normalization. The two steps are related by the
push parameter 𝛽.

probability distribution 𝒙 into account. Unlike single source
PPR that starts from only one node in the graph, the feature
vector 𝒙 is usually dense and hence requires specific process-
ing. Second, the feature-based query facilitates subsequent
transformation in Equation (7) and reusing in Equation (13).
This design ensures that the computation result 𝝅 satisfies
the need of GNN propagation. Third, the Feature-Push de-
sign minimizes the need of additional storage and conducts
most feature-wise operations in-place, which demonstrates
excellent memory efficiency.

As shown in Algorithm 1, the Feature-Push algorithm
outputs the approximation of embedding vector �̂� (𝒙) for in-
put feature 𝒙. The node set 𝑈 can either be the whole graph
nodes 𝑉 or a subset of 𝑉 . Repeating it for 𝐹 times with all
features 𝒙1, · · · , 𝒙𝐹 produces all columns compositing the
estimate of embedding matrix 𝑷 . The algorithm first com-
putes the approximation 𝜋 (𝒙; 𝑡) for each node 𝑡 ∈ 𝑈 through
forward push (line 1-9 in Algorithm 1), then conducts com-
pressed random walks to save computation (line 10-14). A
running example is illustrated in Fig. 2. We analyze each step
and their combination respectively.

Forward Push on Feature Value. Instead of calculating
the PPR value 𝜋 (𝑠, 𝑡), the forward push method in Feature-
Push maintains a reserve value 𝜋 (𝒙; 𝑡) directly for node
𝑡 ∈ 𝑈 and feature 𝒙 as the estimation of 𝜋 (𝒙; 𝑡). An auxiliary
residue value 𝑟 (𝒙; 𝑡) is recorded as the intermediate result
for each node-feature pair. The residue is initialized by the
𝐿1-normalized feature vector 𝒙, to convert node attributes to
distributions in line with 𝜋 (𝒙; 𝑡) that stands for the probabil-
ity with a sum of 1 for all nodes 𝑡 ∈ 𝑈 . The forward push
algorithm subsequently updates the residue of target node 𝑡
from the source node 𝑠 to propagate the information. The
threshold 𝑟𝑚𝑎𝑥 controls the terminating condition so that the
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process can stop early. Eventually, the forward push transfers
𝛼 portion of node residue 𝑟 (𝒙; 𝑡) into reserve value, while
distributing the remaining (1 − 𝛼) to the neighbors of 𝑠.

Random Walk on Feature Residue. Feature-Push then
performs random walks with decay factor 𝛼 to propagate the
residue feature value. Compared with the pure random walk
approach, Feature-Push only requires 𝑟 (𝒙;𝑡 )

𝑟𝑠𝑢𝑚
·𝑁𝑊 number of

walks per node with the same precision guarantee, benefiting
from the Forward Push results. As presented in line 10, the
total random walk number𝑁𝑊 is decided by the ratio 𝑟𝑠𝑢𝑚/𝛽,
hence a sparser residue and lager parameter 𝛽 result in less
random walks required. The estimation of 𝜋 (𝒙; 𝑡) is even-
tually achieved by implementing the Monte-Carlo method
[17, 38], and is updated according to the fraction of random
walks terminating at 𝑡 .

Combination and Normalization. The combination of for-
ward push and random walk generates the approximate PPR
matrix𝚷 (𝑙 ) = 𝛼 (1−𝛼)𝑙

(
𝑨𝑫−1)𝑙 for a certain 𝑙 . To be aligned

with the embedding matrix 𝑷 (𝑙 ) in Equation (6), we apply
the normalization by degree vector (lines 2 and 15 in Al-
gorithm 1) to achieve the transformation in Equation (7). It
is worth noting that Algorithm 1 is fully feature-oriented –
it processes one feature vector at a time. Such scheme has
several merits, with the first is that a series of vectorization
techniques can be applied during processing each feature to
accelerate computation. For space optimization, the feature
vector 𝒙 and result vector �̂� (𝒙) can be computed in-place and
share the same memory, thus greatly reduces the overhead
of storing such dense vector and in the mean time ensures
memory locality.

Approximation Precision. To depict the combination be-
tween forward push and random walk processes, we define
the push parameter 𝛽:

Definition 2 (Push Parameter) The push parameter 𝛽 is the
scale between the total left residual 𝑟𝑠𝑢𝑚 and the total number
of sampled random walks 𝑁𝑊 in Feature-Push.

The parameter 𝛽 is named after its pivot role in determin-
ing the portion of forward push conducted as shown later in
Lemma 4. It is the key parameter of Feature-Push, which
balances absolute error guarantee and time complexity. Ref-
erencing the trade-off in [39], we set 𝛽 to a specific value,
namely standard push parameter 𝛽𝑠 = 𝜆2

(2𝜆/3+2) ·log(2/𝜙 ) , to sat-
isfy the guarantee of 𝜋 (𝒙; 𝑡) in Definition 1. In Algorithm 1,
the forward push and random walk are combined in such
form as line 14.

Derived from the single-source PPR analysis [3, 39], we
state that our Feature-Push algorithm provides an unbi-
ased estimation 𝜋 (𝒙; 𝑡) of the value 𝜋 (𝒙; 𝑡) as the following
lemma. By running Algorithm 1 feature by feature, the ap-
proximate calculation is also applicable to the PPR matrix
containing multiple vectors:

Lemma 1 Algorithm 1 produces an unbiased estimation
𝜋 (𝒙; 𝑡) of the value 𝜋 (𝒙; 𝑡) satisfying Equation (8). Repeat-
ing it for 𝐹 times produces an unbiased estimation 𝑷 of the
embedding matrix 𝑷 .

Parallel Computation. Since Algorithm 1 processes one
feature vector at a time, and the execution of features is in-
dependent to each other, the acquisition on the estimation
matrix 𝑷 can be safely parallelized to further celebrate effi-
ciency. In implementation, each thread can simultaneously
perform Algorithm 1 to compute the propagation from the
feature vector 𝒙 𝑓 to the result PPR �̂� (𝒙 𝑓 ), corresponding
to the 𝑓 -th column from matrix 𝑿 to 𝑷 . As stated previ-
ously, the computation is localized to a single column vector,
hence performing parallel processing does not occur addi-
tional memory overhead.

3.3 Feature-Reuse

A key difference between the feature PPR and the classic
single-source PPR is that, in single-source PPR, queries on
nodes are orthogonal to each other, whereas in feature PPR
there is similarity between different features. As a direct
derivation from Equation (6), the feature PPR 𝑷 is linearly
related to the attribute 𝑿 . Hence, the feature-oriented calcu-
lation Algorithm 1 enables taking advantage of such property
and utilizing computed values to estimate the PPR of another
similar feature.

We propose Feature-Reuse algorithm that speeds up
the feature PPR computation by leveraging and reusing the
similarity between different feature vectors. We select a set
of vectors as the base vectors from all features and com-
pute their PPR values by Feature-Push. When querying
the PPR value on a non-base feature vector, Feature-Reuse
separates a segment of the vector that can be obtained by
combining the base vectors, and estimate the PPR value of
this segment directly with the PPR value of the base vectors
without additional Feature-Push computation overhead.

We elaborate how to utilize the linearity of PPR val-
ues by a toy example. If we have the PPR values 𝝅 (𝒃) for
base feature vector 𝒃 = (0.5, 0.5), and need to compute the
PPR vector for 𝒙 = (0.4, 0.6), we can firstly decompose
𝒙 = (0.4, 0.4) + (0, 0.2). We then acquire the PPR vector
for (0.4, 0.4) directly by 0.8𝝅 (𝒃), and just need to compute
the PPR value of the residue (0, 0.2). Intuitively, the latter
PPR calculation is faster than directly processing the raw
feature, thanks to the reduced dimension. We will later de-
rive in Lemma 4 that the computation complexity is actually
positively related to 𝐿1 norm ∥𝒙 ∥1 of the residue vector.

To formulate the Feature-Reuse algorithm, we here de-
rive it in the form of an optimization problem under our
matrix notation. On the input side, the algorithm aims to
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represent the feature matrix 𝑿 by a partial of selected fea-
ture columns called base features. The number of base fea-
ture vectors is 𝐹𝐵 ≪ 𝐹 and they compose the base matrix
𝑿𝐵 =

[
𝒃1, · · · , 𝒃𝐹𝐵

]
, 𝒃𝑓 ∈ 𝑿 . Then, the entire feature matrix

𝑿 can be written as combinations of the bases:

𝑿 = 𝑿𝐵 · 𝚯 + 𝒁 , (9)

where 𝚯 is the base coefficient matrix with shape 𝐹𝐵 × 𝐹 ,
and 𝒁 = [𝒛1, · · · , 𝒛𝐹 ] represents the left values in features.
Equation (9) can be interpreted as a rank-𝐹𝐵 decomposition
on raw matrix 𝑿 plus a residue matrix.

To compute feature PPR, Feature-Push is applied to
the column vectors of 𝑿𝐵 and 𝒁 instead of 𝑿 . The feature
PPR estimation on the two matrices are denoted as 𝑷𝐵 and 𝑷𝑍 ,
respectively. Corresponding to Equation (9), the approximate
feature PPR on 𝑿 can be acquired by the combinations as:

𝑷 = 𝑷𝐵 · 𝚯 + 𝑷𝑍 . (10)

Now that to accelerate the Feature-Push calculation
especially on 𝒁 , we aim to sparsify the residue vector by
reducing the 𝐿1 norm of its column vectors ∥𝒛𝑓 ∥1. This is
equivalent to minimizing the 𝐿1 norm of matrix ∥𝒁 ∥1 =∑𝐹
𝑓 =1 ∥𝒛𝑓 ∥1 while ensuring the low rank approximation 𝒀 =

𝑿𝐵𝚯 is satisfied by selecting base features. Hence the overall
optimization goal is:

min rank(𝒀 ) + 𝜂 ∥𝒁 ∥1 , s.t. 𝒀 + 𝒁 = 𝑿 . (11)

Equation (11) indicates that, Feature-Reuse actually
seeks to decompose feature matrix 𝑿 as the sum of a low

Algorithm 2 Feature-Reuse
Input: Graph 𝐺 , feature matrix 𝑿 = [𝒙1, · · · , 𝒙𝐹 ], base size 𝐹𝐵 ,

reuse parameter 𝛾 , error bound 𝜆
Output: Approximate embedding matrix 𝑷

1 Sample feature matrix 𝑿 ′ on node set𝑈 ′ ⊂ 𝑈
2 𝒀 ,𝒁 , 𝑬 ← 0, 𝜇 ← 1/𝑛𝑈 ′
3 while ∥𝑿 ′ − 𝒀 − 𝒁 ∥1 > 𝜆∥𝑿 ′∥1 do
4 𝒁 ← Threshold𝜇 (𝑿 ′ − 𝒀 − 𝑬)
5 𝑼 , 𝑺, 𝑽 ← SVD𝐹𝐵 (𝑿 ′ − 𝒁 + 𝑬), 𝒀 ← 𝑼𝑺𝑽

6 𝑬 ← 𝑿 ′ − 𝒀 − 𝒁 + 𝜇𝑬
7 𝜓1, · · · ,𝜓𝐹𝐵 ← arg min1≤𝜓𝑖≤𝐹

∑𝜓𝐹𝐵

𝑓 =𝜓1
∥𝒛𝑓 ∥1

8 𝑿𝐵 ← [𝒙𝜓1 , · · · , 𝒙𝜓𝐹𝐵
], 𝑽𝐵 ← [𝒗𝜓1 , · · · , 𝒗𝜓𝐹𝐵

]
9 𝚯← 𝑽−1

𝐵
𝑽 , 𝛽𝑠 ← 𝜆2

(2𝜆/3+2) ·log(2𝑛)
10 for 𝑖 from 1 to 𝐹𝐵 do ⊲ [in parallel]
11 �̂�𝑖 ← Apply Alg. 1 on 𝒃𝑖 with 𝛽𝐵 = 𝛾𝛽𝑠

12 𝑷𝐵 ← [�̂�1, · · · , �̂�𝐹𝐵 ]
13 for 𝑓 from 1 to 𝐹 do ⊲ [in parallel]
14 𝜽𝑓 ← col𝑓 𝚯, 𝒛𝑓 ← 𝒙 𝑓 − 𝑿𝐵𝜽𝑓
15 𝜃𝑠𝑢𝑚 =

∑𝐹𝐵
𝑖=1 𝜃 𝑓 𝑖

16 �̂�𝑓 ← Apply Alg. 1 on 𝒛𝑓 with 𝛽𝑍 = (1 − 𝛾𝜃𝑠𝑢𝑚) 𝛽𝑠
17 �̌�𝑓 ← �̂�𝑓 + 𝑷𝐵𝜽𝑓
18 return 𝑷 = [�̌�1, · · · , �̌�𝐹 ]

rank component 𝒀 plus a sparse component 𝒁 . Such opti-
mization problem falls exactly the same as Robust Principal-
Component Analysis (RPCA) [6, 7] when 𝜂 = 1√

𝑛
, which can

be effectively solved by convex optimization methods such
as alternating direction [27]. In general, [6] discovers that the
problem can be transferred into a pair of convex problems
when only one term in the derived form of Equation (11) is
variable and a generic Lagrange multiplier method can be ap-
plied. Such algorithm requires only alternative matrix-wise
operation and does not involve complex calculations, making
it highly efficient to execute. When the iteration converges,
the result matrices 𝒀 and 𝒁 are guaranteed to be low-rank
and sparse, respectively.

However, there are two major difficulties in directly ex-
ploiting the RPCA optimization for our reuse task. Examin-
ing Equation (11), its low rank matrix 𝒀 does not guarantee
the decomposition of 𝑿𝐵𝚯 that includes base features 𝑿𝐵
inherited from 𝑿 . Also, considering the scale of the feature
matrix is as large as𝑂 (𝑛𝐹 ), it is inefficient to employ the de-
composition on the entire matrix. We hence propose several
techniques to specifically address these issues and achieve
our Feature-Reuse algorithm.

Algorithm 2 shows the pseudo code of Feature-Reuse
that utilizes a few base features to efficiently compute the
feature PPR on the entire matrix. In line 1-9, it first leverages
RPCA iterations on a sampled portion of the feature matrix
to finds out base features and corresponding combination
coefficient. After concatenating the base feature and PPR
matrices (line 10-12), it reuses these calculation results on the
other features to form the approximate PPR matrix (line 13-
17). We separately elaborate on these two phases.

Base Selection on Matrix Portion. Feature-Reuse first
optimizes the rank-𝐹𝐵 and sparse components from fea-
ture matrix. Line line 3-6 in Algorithm 2 corresponds to
the RPCA iterative solution [6], where Threshold𝜏 (𝑥) =

sgn(𝑥)max( |𝑥 | − 𝜏, 0) is shrinkage operation that zeros el-
ements with absolute value smaller than threshold 𝜏 , and
SVD𝑘 (·) is rank-𝑘 truncated singular value decomposition
(truncated SVD). The decomposition iteration is applied to
a portion of feature matrix 𝑋 ′, containing only a subset of
nodes. Studies show that the sampling size 𝑛𝑈 ′ can be as
small as 𝑂 (𝐹 2) while preserving the precision of RPCA de-
composition [14]. Hence the complexity of such base selec-
tion scheme can be bounded by 𝑂 (𝑛𝑈 ′𝐹𝐹𝐵), which is free
from the scale of the whole graph.

When the decomposition components 𝒀 and 𝒁 are com-
puted from 𝑿 ′, we utilize them to estimate the feature reuse
coefficient on the entire matrix. We first select the top-𝐹𝐵
indices𝜓 from all features with minimum decomposition er-
ror of respective residue vector 𝒛𝒇 , i.e. columns of the sparse
component 𝒁 . Features at these indices are hence regarded as
base features 𝒃𝑖 = 𝒙𝜓𝑖 . Meanwhile, the coefficient matrix Θ
is computed from the low rank components corresponding to
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the selected indices. This is because with neglectable approx-
imation errors, there is 𝑿𝐵 = 𝑼𝑺𝑽𝐵 for bases and 𝒀 = 𝑿𝐵𝚯
for all features. Then in line 10-12, Feature-Push is invoked
to acquire the feature PPR �̂� (𝒃𝑖 , 𝛽𝐵) with input vector 𝒃𝑖 and
push parameter 𝛽𝐵 . The calculation results are stored to 𝑷𝐵
as Equation (10) for further reuse in the following phase.

Calculation Reuse on Sparse Residue. Algorithm 2 then
computes the approximate values of the rest features (line 13-
17). For feature 𝑓 , the 𝑓 -th column vector 𝜽 𝑓 of 𝚯 serves
as the reuse coefficient of each bases. According to Equa-
tion (9), values in the vector 𝒙 𝑓 that can be represented by
base features are removed, and the residue vector is 𝒛𝑓 , which
is sparse as RPCA optimizes. We compute the feature PPR
�̂� (𝒛𝑓 , 𝛽𝑍 ) of such sparse residue by Feature-Push. The push
parameter 𝛽𝑍 is dependent on the particular reuse state of co-
efficient 𝜽 𝑓 . Finally, the feature PPR �̌� (𝒙 𝑓 ) on raw feature 𝒙 𝑓
can be constituted as line 17, reusing the PPR computation
results of base features.

Approximation Precision. In Algorithm 2, the result PPR
of a base vector �̂� (𝒃𝑖 , 𝛽𝐵) is directly computed by Feature-
Push in line 11 and has its accuracy guarantee according to
Lemma 1. However, the PPR of non-base features is from the
combination in line 17. How to assure that such approxima-
tion still satisfies the precision guarantee in Definition 1? We
demonstrate that the precision can be controlled by setting
proper value to the push parameters 𝛽𝐵 and 𝛽𝑍 when calling
Feature-Push in line 11 and line 16.

We first write the reuse combination Equation (9) and
Equation (10) in our vector notation for a feature 𝒙 𝑓 . For
simplicity we omit the subscript 𝑓 :

𝒙 =

𝐹𝐵∑︁
𝑖=1

𝜃𝑖 · 𝒃𝑖 + 𝒛, (12)

�̌� (𝒙) =
𝐹𝐵∑︁
𝑖=1

𝜃𝑖 · �̂� (𝒃𝑖 , 𝛽𝐵) + �̂� (𝒛, 𝛽𝑍 ). (13)

The following lemma depicts the precision constraint of
�̌� (𝒙) in Equation (13).

Lemma 2 Given a feature vector 𝒙, the ground truth of PPR
vector is 𝝅 (𝒙), and the estimation output by Equation (13)
is �̌� (𝒙). For any respective element 𝜋 (𝒙; 𝑡) and 𝜋 (𝒙; 𝑡),
|𝜋 (𝒙; 𝑡) − 𝜋 (𝒙; 𝑡) | ≤ 𝜆 holds with probability at least 1 − 𝜙 ,
for 𝛽𝑍 such that 𝛽𝑍 > 𝛽𝐵 and

𝛽𝑍 ≤
𝜆2/log(2/𝜙) − 2

∑𝐹𝐵
𝑖=1 𝜃𝑖𝛽𝐵

2𝜆/3 + 2
. (14)

Proof. Similar to the theory in [30], feature PPR can also be
interpreted as the solution of the following linear system:

𝝅 (𝒙) = 𝛼𝒙 + (1 − 𝛼)𝑨𝑫−1𝜋 (𝒙),

which can be transformed to

(𝑰 − (1 − 𝛼)𝑨𝑫−1)𝝅 (𝒙) = 𝛼𝒙 .

Denote non-singular matrix 𝑪 = 𝑰 − (1 − 𝛼)𝑨𝑫−1. Then

𝝅 (𝒙) = 𝛼𝑪−1𝒙 .

The above equation indicates that feature PPR satisfies the
associative law, which means

𝜃𝝅 (𝒙) = 𝝅 (𝜃𝒙) , 𝝅 (𝒙1) + 𝝅 (𝒙2) = 𝝅 (𝒙1 + 𝒙2).

According to the associative law, the combination PPR �̌� (𝒙)
expressed in Equation (13) satisfies

E[�̌� (𝒙)] =
𝐹𝐵∑︁
𝑖=0

𝜃𝑖 · E[𝜋 (𝒃𝑖 , 𝛽𝐵)] + E[𝜋 (𝒛, 𝛽𝑍 )]

=

𝐹𝐵∑︁
𝑖=0

𝜃𝑖𝝅 (𝒃𝑖 ) + �̂� (𝒛) = 𝝅 (
𝐹𝐵∑︁
𝑖=0

𝜃𝑖𝒃𝑖 + 𝒛) = 𝝅 (𝒙).

Therefore �̌� (𝒙) is an unbiased estimation of 𝝅 (𝒙). For each
base 𝒃𝑖 , we compute 𝜋 (𝒃𝑖 , 𝛽𝐵) with Algorithm 1. In each
such computation of Algorithm 1, the left residue on each
node 𝑣 before sampling random walks at line 10 is 𝑟 (𝒃𝑖 ; 𝑣),
the total left residue is 𝑟𝑠𝑢𝑚 (𝒃𝑖 ), and 𝑁𝑊 (𝒃𝑖 ) = 𝑟𝑠𝑢𝑚 (𝒃𝑖 )/𝛽𝐵
is the number of random walks sampled.

As each base PPR is computed independently, combining
the PPR vectors by

∑𝐹𝐵
𝑖=0 𝜃𝑖𝜋 (𝒃𝑖 , 𝛽𝐵) is equivalent to push a

vector 𝜃𝑖𝒃𝑖 with the same pattern of the computing process
of 𝜋 (𝒃𝑖 , 𝛽𝐵), and then sample 𝑁𝑊 (𝒃𝑖 ) random walks on the
remaining residues of 𝜃𝑖𝑟𝑠𝑢𝑚 (𝒃𝑖 ) in total.

For a such computing process on𝜃𝑖𝒃𝑖 , consider the𝑁𝑊 (𝒃𝑖 )
random walks it generate from all nodes. Let the random
variable 𝑋 𝑗 (𝒃𝑖 ; 𝑡) = 1 if the 𝑗-th random walk terminates
at 𝑡 , and otherwise be 𝑋 𝑗 (𝒃𝑖 ; 𝑡) = 0. Associating with the
single-source PPR 𝜋 (𝑣, 𝑡), we have

E


𝑁𝑊 (𝒃𝑖 )∑︁
𝑗=0

𝑟𝑠𝑢𝑚 (𝒃𝑖 )
𝑁𝑊 (𝒃𝑖 )

𝑋 𝑗 (𝒃𝑖 ; 𝑡)
 =

∑︁
𝑣∈𝑉

𝑟 (𝒃𝑖 ; 𝑣) · 𝜋 (𝑣, 𝑡) . (15)

Consider the summation of all base vectors,

E


𝐹𝐵∑︁
𝑖=0

𝑁𝑊 (𝒃𝑖 )∑︁
𝑗=0

𝜃𝑖𝑟𝑠𝑢𝑚 (𝒃𝑖 )
𝑁𝑊 (𝒃𝑖 )

𝑋 𝑗 (𝒃𝑖 ; 𝑡)
 =

𝐹𝐵∑︁
𝑖=0

∑︁
𝑣∈𝑉

𝜃𝑖𝑟 (𝒃𝑖 ; 𝑣) · 𝜋 (𝑣, 𝑡).

As we have the PPR estimation expressed in the form of
combination of residue and random walk values:

𝜋 (𝒙; 𝑡) =
𝐹𝐵∑︁
𝑖=0

𝜃𝑖𝑟 (𝒃𝑖 ; 𝑡) + 𝑟 (𝒛; 𝑡)

+
𝐹𝐵∑︁
𝑖=0

𝑁𝑊 (𝒃𝑖 )∑︁
𝑗=0

𝜃𝑖𝑟𝑠𝑢𝑚 (𝒃𝑖 )
𝑁𝑊 (𝒃𝑖 )

𝑋 𝑗 (𝒃𝑖 ; 𝑡) +
𝑟𝑠𝑢𝑚 (𝒛)
𝑁𝑊 (𝒛)

𝑋 𝑗 (𝒛; 𝑡).
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By referring to Lemma 3.2 in [38], we can further acquire
the precision guarantee of the PPR as:

Pr[|𝜋 (𝒙; 𝑡) − 𝜋 (𝒙; 𝑡) | > 𝜆] ≤ 2 · exp(− 𝜆2𝑁𝑠𝑢𝑚
2𝜈 + 2𝑎𝜆/3 ), (16)

where the number of walks 𝑁𝑠𝑢𝑚 = 𝑁𝑊 (𝒛) +
∑𝐹𝐵
𝑖=0 𝑁𝑊 (𝒃𝑖 ),

𝑎 = 𝑁𝑠𝑢𝑚 ·max{ 𝜃1𝑟𝑠𝑢𝑚 (𝑏1 )
𝑁𝑊 (𝑏1 ) , · · · ,

𝜃𝐹𝐵 𝑟𝑠𝑢𝑚 (𝑏𝐹𝐵 )
𝑁𝑊 (𝑏𝐹𝐵 )

,
𝑟𝑠𝑢𝑚 (𝒛 )
𝑁𝑊 (𝒛 ) }, and

𝜈 =
1

𝑁𝑠𝑢𝑚

𝐹𝐵∑︁
𝑖=0

𝑁𝑊 (𝒃𝑖 )∑︁
𝑗=0

(
𝜃𝑖𝑟𝑠𝑢𝑚 (𝒃𝑖 )𝑁𝑠𝑢𝑚

𝑁𝑊 (𝒃𝑖 )

)2
E[𝑋 𝑗 (𝒃𝑖 ; 𝑡)]

+ 1
𝑁𝑠𝑢𝑚

𝑁𝑊 (𝒛 )∑︁
𝑗=0

(
𝑟𝑠𝑢𝑚 (𝒛)𝑁𝑠𝑢𝑚
𝑁𝑊 (𝒛)

)2
E[𝑋 𝑗 (𝒛; 𝑡)] . (17)

Recall that 𝛽𝑍 < 𝛽𝐵 , therefore 𝑟𝑠𝑢𝑚 (𝒛 )𝑁𝑠𝑢𝑚

𝑁𝑊 (𝒛 ) >
𝑟𝑠𝑢𝑚 (𝒃𝒊 )𝑁𝑠𝑢𝑚

𝑁𝑊 (𝒃𝒊 )
holds for any 𝒃𝒊 , thence 𝑎 =

𝑟𝑠𝑢𝑚 (𝒛 )𝑁𝑠𝑢𝑚

𝑁𝑊 (𝒛 ) .
To simplify the expression of 𝜈 , we substitute Equa-

tion (15) into Equation (17) as:

𝜈 =
1

𝑁𝑠𝑢𝑚

𝐹𝐵∑︁
𝑖=0

𝜃2
𝑖 𝑟𝑠𝑢𝑚 (𝒃𝑖 )𝑁 2

𝑠𝑢𝑚

𝑁𝑊 (𝒃𝑖 )
·
∑︁
𝑣∈𝑉

𝑟 (𝒃𝑖 ; 𝑣) · 𝜋 (𝑣, 𝑡)

+ 1
𝑁𝑠𝑢𝑚

𝑟𝑠𝑢𝑚 (𝒛)𝑁 2
𝑠𝑢𝑚

𝑁𝑊 (𝒛)
·
∑︁
𝑣∈𝑉

𝑟 (𝒛; 𝑣) · 𝜋 (𝑣, 𝑡)

≤
𝐹𝐵∑︁
𝑖=0

𝜃2
𝑖 𝛽𝐵𝑁𝑠𝑢𝑚 + 𝛽𝑍𝑁𝑠𝑢𝑚 .

The last inequality is because of Definition 2, where the
push coefficients are the scales as 𝛽𝐵 = 𝑟𝑠𝑢𝑚 (𝒃𝑖 )/𝑁𝑊 (𝒃𝑖 ),
𝛽𝑍 = 𝑟𝑠𝑢𝑚 (𝒛)/𝑁𝑊 (𝒛). With the expressions on 𝑎 and 𝜈 , we
are able to derive Equation (16) as:

Pr[|𝜋 (𝒙; 𝑡)−𝜋 (𝒙; 𝑡) | > 𝜆] ≤ 2·exp(− 𝜆2

2
∑𝐹𝐵

𝑖=0 𝜃
2
𝑖
𝛽𝐵+2𝛽𝑍 +2𝛽𝑍𝜆/3

).

By setting the value of 𝛽𝑍

𝛽𝑍 ≤
𝜆2/log(2/𝜙) − 2

∑𝐹𝐵
𝑖=0 𝛽𝐵𝜃𝑖

2𝜆/3 + 2
,

we hence prove that

Pr[|𝜋 (𝒙; 𝑡) − 𝜋 (𝒙; 𝑡) | > 𝜆] ≤ 𝜙 □

Lemma 2 draws to the conclusion that, when choosing
a smaller push parameter 𝛽𝐵 for base vectors, the parameter
𝛽𝑍 can be larger and reduce the cost of PPR computation on
most feature vectors. Hence we are particular interested in
the upper bound of 𝛽𝑍 and set the actual value close to it.
As Equation (14) suggests, if 𝛽𝐵 are the same for all base
Feature-Push, then the upper bound of 𝛽𝑍 is dependent on
the sum of reuse coefficients 𝜃𝑠𝑢𝑚 =

∑𝐹𝐵
𝑖=1 𝜃𝑖 .

Based on Lemma 2, in Feature-Reuse algorithm we
propose the reuse parameter 𝛾 as the indicator of the balance
between base push parameter 𝛽𝐵 and the one on residue 𝛽𝑍 .
The following lemma states that by setting 𝛽𝐵 = 𝛾𝛽𝑠 , 𝛽𝑍 =

(1 − 𝛾𝜃𝑠𝑢𝑚)𝛽𝑠 as in Algorithm 2, it satisfies the precision
guarantee in Definition 1:

Lemma 3 Given a feature set 𝑿 , for any feature vector 𝒙 𝑓 ∈
𝑿 , Algorithm 2 returns an approximate PPR vector �̌� (𝒙 𝑓 ),
that any of its elements 𝜋 (𝒙 𝑓 ; 𝑡) satisfies Equation (8) with
at least 1 − 𝜙 probability.

Proof. In Feature-Reuse, 𝜃𝑠𝑢𝑚 =
∑𝐹𝐵
𝑖=1 𝜃𝑖 denotes the pro-

portion of the feature vector 𝒙 computed by the base vectors,
and the 𝐿1 length of the remaining part is 1 − 𝜃𝑠𝑢𝑚 . Then 𝛽𝑍
satisfies:

𝛽𝑍 =
(1 − 𝛾𝜃𝑠𝑢𝑚)𝜆2

log(2/𝜙) · (2𝜆/3 + 2) ≤
𝜆2/log(2/𝜙)

2𝜆/3 + 2
−

𝐹𝐵∑︁
𝑖=1

𝛽𝐵𝜃𝑖

≤
𝜆2/log(2/𝜙) − 2

∑𝐹𝐵
𝑖=1 𝛽𝐵𝜃𝑖

2𝜆/3 + 2
.

Therefore, parameters 𝛽𝐵 for base vectors and 𝛽𝑍 for re-
maining vectors satisfy Equation (14). According to Lemma 2
this lemma follows.

Parallel Computation. The parallelism of Feature-Reuse
is based on that of Feature-Push. Since it is fully feature-
oriented, each feature can still be computed individually.
For the bulk of the loops in Algorithm 2, i.e. line 10 and
line 13 containing PPR calculations, the processing can be
parallelized.

3.4 Complexity Analysis

We then develop theoretical analysis on the time and memory
complexity of SCARA. For a single run of Algorithm 1, we
have the following lemma:

Lemma 4 When the input vector is 𝒙, the time complexity
of Feature-Push is bounded by 𝑂 (

√︃
𝑚∥𝒙 ∥1
𝛽
).

Proof. We analyze the two parts of Algorithm 1 separately.
The forward push with early termination threshold 𝑟𝑚𝑎𝑥 runs
in𝑂 (∥𝒙 ∥1/𝑟𝑚𝑎𝑥 ) as it iteratively propagates the residue value
in the vector [3]. For random walks on feature residue, we
employ the complexity derived by [39] as 𝑂 (𝑚 · 𝑟𝑚𝑎𝑥/𝛽).
Hence the overall running time of one query in Algorithm 1 is
bounded by𝑂

(
∥𝒙 ∥1
𝑟𝑚𝑎𝑥
+ 𝑟𝑚𝑎𝑥 · 𝑚𝛽

)
. By applying Lagrange mul-

tipliers, the complexity is minimized when selecting 𝑟𝑚𝑎𝑥 =√︃
𝛽 ∥𝒙 ∥1
𝑚

, and the balanced complexity is 𝑂 (
√︃
𝑚∥𝒙 ∥1
𝛽
).
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Utilizing Lemma 4, the time complexity of computing
one feature PPR 𝜋 (𝒙, 𝛽) with Algorithm 1 can be bounded
by 𝑂 (

√︁
𝑚∥𝒙 ∥1/𝛽). To get PPR value with absolute error

guarantee of 𝜆, Algorithm 1 requires a push parameter 𝛽𝑠 =
𝜆2/log(2/𝜙 )

2𝜆/3+2 . Then without Feature-Reuse, the time com-
plexity for computing PPR value for each normalized feature
vector is bounded by 𝑂 (

√︁
𝑚/𝛽𝑠 ).

When Feature-Reuse applies, let 𝜃𝑠𝑢𝑚 =
∑𝐹𝐵
𝑖=1 𝜃𝑖 denote

the proportion of a feature 𝒙 𝑓 computed by base vectors, and
the 𝐿1 length of the rest 𝒙′ is 1 − 𝜃𝑠𝑢𝑚 . In Algorithm 2, we
compute the remaining part with push parameter of (1 −
𝛾𝜃𝑠𝑢𝑚)𝛽𝑠 , where 0 < 𝛾 ≤ 1. Recalling that the 𝐿1 length of
the feature vector is reduced by 𝜃𝑠𝑢𝑚 with Feature-Reuse,
we derive the time complexity of Feature-Reuse on 𝒙 is

𝑂

(√︃
𝑚 (1−𝜃𝑠𝑢𝑚 )
𝛽𝑠 (1−𝛾𝜃𝑠𝑢𝑚 )

)
, which is

√︃
1−𝜃𝑠𝑢𝑚

1−𝛾𝜃𝑠𝑢𝑚 times smaller than

those without Feature-Reuse.
For example, if we compute 𝜃𝑠𝑢𝑚 = 1/2 for a vector 𝒙 𝑓

with the base vectors, and set𝛾 = 1/4, then the complexity of
computing the PPR for 𝒙 𝑓 is𝑂 (

√︁
4𝑚/7𝛽𝑠 ), which is substan-

tially better than the consumption without Feature-Reuse
𝑂 (

√︁
𝑚/𝛽𝑠 ). The overhead of each base vector is𝑂 (

√︁
4𝑚/𝛽𝑠 ),

which is only twice slower than the original complexity. As
we select only a few base vectors, the additional overhead
produced by computing base vectors is neglectable com-
pared with the acceleration gained.

When Feature-Reuse applies, the complexity of com-
puting a feature vector is not worse than the complexity
without Feature-Reuse, and is equivalent to the latter only
when 𝜃𝑠𝑢𝑚 = 0 (i.e. the feature vector is completely orthog-
onal with the base vectors). Therefore in the worst case, the
complexity of SCARA on feature matrix 𝑿 is equivalent to
repeating 𝐹 queries of Algorithm 1. By setting 𝜙 = 1/𝑛, we
can derive the time overhead of SCARA precomputation as
shown in Table 1. For the complexity of memory, the usage
of a single-query Feature-Push can be denoted as 𝑂 (𝑛).
Hence the precomputation complexity of SCARA is given
by the following theorem:

Theorem 1 Time complexity of SCARA precomputation is
bounded by𝑂

(
𝐹
√︁
𝑚 log𝑛/𝜆

)
. Memory complexity is𝑂 (𝑛𝐹 ).

4 Experimental Evaluation

We implement the SCARA model and evaluate its perfor-
mance by experiments in the aspects of both efficacy and scal-
ability. From efficacy perspective, we compare the SCARA
performance with other scalable GNN competitors under
similar parameter settings. To demonstrate the scalability of
our model, we further investigate its time and memory over-
head with these benchmarks.

4.1 Experiment Setting

Datasets. We adopt benchmark datasets of different graph
properties, feature dimensions, and data splitting for large-
scale node classification tasks. We present the dataset statis-
tics in Table 2. Among the datasets, PPI, Yelp, and Amazon
are for inductive learning, where the training and testing
graphs are different and require separate graph precompu-
tation and propagation. The given original node splittings
are in Table 2. The learning tasks on the other datasets are
transductive and are performed on the same graph structure.
For a dataset with 𝑁𝑐 target classes, we refer to convention
in [21, 5] to randomly sample two sets of 20𝑁𝑐 and 200𝑁𝑐
nodes for training and validation, respectively, and the rest
labeled nodes in the graph as the testing set.

Metrics. Predictions on datasets PPI, Yelp, and MAG are
multi-label classification having multiple targets for each
node. The other tasks are multi-class with only one target
class per node. We uniformly utilize micro F1-score to assess
the model prediction performance. For efficiency metrics, we
record the precomputation, training, and inference time of
each model. We also measure the peak RAM memory in the
whole process, as the GPU memory is mainly determined
by training batch size and less relevant. The evaluation is
conducted on a machine with Ubuntu 20 operating system,
with 192GB RAM, two 28-core Intel Xeon CPUs (2.2GHz),
and an NVIDIA RTX A5000 GPU (24GB memory). The
implementation is by PyTorch and C++.

Baseline Models. We select the state-of-the-art models of
different scalable GNN methods analyzed in Section 2 as our
baselines. GraphSAINT-RW [46] and GAS [16] are repre-

Table 2: Dataset statistics and parameters. “Split” is the percentage of nodes in training/validation/testing set. “(i)” and “(t)”
stand for inductive and transductive tasks. “(m)” and “(s)” stand for multiple and single target classifications.

Dataset Nodes 𝑛 Edges𝑚 Features 𝐹 Classes 𝑁𝑐 Split Probability 𝛼 Convolution 𝑟 Common

PPI [18] 56, 944 818, 716 50 121 (m) 0.79/0.11/0.10 (i) 0.3 0.0

𝜆 = 1 × 10−4

𝐹𝐵 = 0.02𝐹
𝛾 = 0.2

Yelp [46] 716, 847 6, 977, 410 300 100 (m) 0.75/0.10/0.15 (i) 0.9 0.3
Reddit [18] 232, 965 114, 615, 892 602 41 (s) 0.01/0.04/0.96 (t) 0.5 0.5

Amazon [12] 2, 400, 608 123, 718, 024 100 47 (s) 0.70/0.15/0.15 (i) 0.2 0.2
MAG [44] 27, 394, 820 366, 143, 207 200 100 (m) 0.01/0.01/0.99 (t) 0.5 0.5

Papers100M [19] 111, 059, 956 1, 615, 685, 872 128 172 (s) 0.78/0.08/0.14 (t) 0.5 0.5
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Table 3: Average results of SCARA and baselines on large-scale datasets for transductive and inductive learning. “Learn” and “Infer”
columns are the learning (sum of precomputation and training) and inference time (s), respectively. “Mem.” is the peak RAM memory
(GB). “F1” is the micro F1-score (%) on testing sets. “–” in rows with “OOM” stands for out of memory error in the settings. “–” in the
GraphSAINT “Pre.” column implies that the model does not have an explicit precomputation stage. The respective models of first and
second best performance in “Learn”, “Infer”, “Mem.”, and “F1” columns are marked in bold and underlined fonts.

Transductive Reddit MAG Papers100M
Learn ( Pre. + Train) Infer Mem. F1 Learn ( Pre. + Train) Infer Mem. F1 Learn ( Pre. + Train) Infer Mem. F1

GraphSAINT 14.4 ( – 14.4) 166.2 13.7 41.6 ±4.8 – – – – OOM – – – – – OOM –
GAS 1200 ( 49.6 + 1151) 2.2 14.0 38.2 ±0.3 – – – – OOM – – – – – OOM –

PPRGo 79.4 ( 62.3 + 17.1) 29.1 9.4 41.5 ±2.3 711 ( 451 + 259) 85240 130 17.0 ±1.5 – – – – OOM –
GBP 138 ( 124 + 13.7) 13.5 7.9 38.8 ±0.3 663 ( 569 + 94.4) 1452 173 34.8 ±0.1 – – – – OOM –

SCARA (ours) 13.9 ( 0.07 + 13.8) 10.7 5.6 44.1 ±0.4 139 (11.6 + 127) 1208 67.7 34.9 ±0.3 1346 (12.7 + 1333) 4.7 71.4 48.9 ±0.8

Inductive PPI Yelp Amazon
Learn ( Pre. + Train) Infer Mem. F1 Learn ( Pre. + Train) Infer Mem. F1 Learn ( Pre. + Train) Infer Mem. F1

GraphSAINT 297 ( – 297) 8.0 13.7 89.1 ±0.3 1093 ( – 1093) 104 55.2 65.0 ±0.0 1890 ( – 1890) 515 165 81.9 ±0.0
GAS 629 ( 0.8 + 628) 5.6 10.0 99.4 ±0.0 4863 (18.6 + 4844) 45.6 48.0 57.2 ±0.5 20549 (96.3 +20453) 212 130 76.3 ±0.3

PPRGo 334 ( 7.4 + 326) 0.8 7.0 48.3 ±0.9 1310 ( 6.3 + 1304) 18.3 9.9 26.3 ±0.5 2560 (95.6 + 2464) 62.0 28.6 77.2 ±1.6
GBP 60.1 ( 2.3 + 57.8) 0.2 5.3 99.2 ±0.1 159 (31.2 + 127) 1.9 13.7 61.6 ±0.1 1181 (84.9 + 1096) 4.9 18.5 88.3 ±0.1

SCARA (ours) 39.9 ( 0.05 + 39.8) 0.2 5.2 99.2 ±0.0 137 ( 0.2 + 136) 2.3 6.4 62.9 ±0.1 1132 ( 0.5 + 1132) 5.0 6.6 85.6 ±0.0
∗ The results are in 32-thread parallel executions and hence different from those in Table 3 of [25].

sentative of different sampling-based algorithms. For post-
and pre-propagation decoupling approaches, we respectively
employ the most advanced PPRGo [5] and GBP [10]. For a
fair comparison, we mostly retain the implementations and
settings from original papers and source codes. We uniformly
apply the same 32-thread parallel executions, which is a com-
mon setting in practical application, for evaluations on all
models unless specially mentioned.

Hyperparameters. For the neural network architecture, we
set the layer depth 𝐿 = 4, layer width 𝑊 = 2048 and
𝑊 = 128 for inductive and transductive tasks, respectively,
to be aligned with optimal baseline results in [10]. In model
optimization, we utilize Adam optimizer with a learning rate
of 0.005. Training is employed in the mini-batch manner
when applicable, with respective batch size 2048 and 64 for
inductive and transductive learning. We train the model for a
maximum of 1000 epochs with early stopping and acquire the
best model weights based on validation. Propagation-related
parameters including PPR teleport probability 𝛼 , convolu-
tion coefficient 𝑟 , push parameter 𝜆, and Feature-Reuse
parameters including base size 𝐹𝐵 and reuse parameter 𝛾
are presented in Table 2 per dataset. We further analyze the
settings of these parameters in Section 4.3.

4.2 Performance Comparison

We evaluate the performance of SCARA and baselines in
terms of both effectiveness and efficiency. Table 3 shows the
average results of repetitive experiments on 6 large datasets,
including the assessments on accuracy, memory, and the run-
ning time for different phases. Among them the key metric
is learning time, which is summed up by precomputation

and training times and presents the efficiency through the
information retrieving process to acquire an effective model.
Compared with the experiments in Table 3 of the confer-
ence version [25], settings including experiment machine
and parallel processing are updated, which leads to differ-
ent evaluation results. We nonetheless state that our main
observation and comparison still hold.

As an overview, the experimental results demonstrate the
superiority of our model achieving scalability throughout the
learning phase. On all datasets, SCARA reaches 30 − 800×
acceleration in precomputation time than the best decou-
pling method, as well as comparable or better training and
inference speed, and significantly better memory overhead.
When the graphs are scaled-up, the time and memory foot-
prints of SCARA increase relatively slower than other GNN
baselines, which is in line with our complexity analysis. For
prediction performance, SCARA converges stably in all tasks
and outputs comparable or better accuracy than other scal-
able competitors.

The trend of scalability can be intuitively inferred from
Fig. 1. The learning time is highly associated with the edge
size𝑚. Since the inductive and transductive tasks adopt dif-
ferent training set splits, we plot the trends separately. The
memory usage of learning is more closely related with the
overall number of nodes 𝑛. As the baseline models already
approach our 192GB RAM limit on graphs with a smaller
scale of 𝑛, it explains the reason for the OOM error of these
models in Table 3.

In a more specific view from time efficiency, our SCARA
model effectively speeds up the learning process in all tasks,
mostly thanks to the fast and scalable precomputation for
graph propagation. The simple neural model forwarding im-
plemented in mini-batch approach also contributes to the ef-
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(a) Reddit (b) PPI (c) Yelp

Fig. 3: Validation F1 convergence curves of SCARA and baseline models on (a) Reddit, (b) PPI, and (c) Yelp datasets. Curves
only represents the process of training phase. Shaded area is the result range of multiple runs.

ficient computation of model training and inference. On the
largest available dataset Papers100M, our method efficiently
completes precomputation in 13 seconds, and finishes learn-
ing in an acceptable length of time, showing the scalability
of processing billion-scale graphs. In comparison among
several datasets, the sampling-based GraphSAINT and GAS
achieve good performance, but the 𝑂 (𝐼𝐿𝑚𝐹 ) term in train-
ing complexity results in great slowdown when graphs are
scaled-up. GraphSAINT is costly for its full-batch prediction
stage on the whole graph, which is usually only executable
on CPUs. GAS is particularly fast for transductive inference,
but it comes with the price of trading off memory expense
and training time to manipulate its cache. The propagation
decoupling models PPRGo and GBP show better scalabil-
ity, but take more time than SCARA to converge, due to the
graph information yielded by precomputation algorithms.
It can be seen that their node-based propagation computa-
tions become less efficient when the graph sizes grow larger,
which aligns with Table 1 complexity analysis. Remarkably,
SCARA achieves about 800× and 200× faster for precom-
putation than these two competitors on Reddit and Amazon.

Regarding memory overhead, our method also demon-
strates its efficiency benefit from its scalable implementation.
We discover that the major memory expense of SCARA only
increases proportional to the graph attribute matrix, while
PPRGo and GBP usually demand twice as large RAM, and
GraphSAINT and GAS use even more for their samplers.
SCARA is the only method that finishes computation on the
billion-scale Papers100M graph, while all other baselines
meet out of memory error on our 192GB machine.

For learning effectiveness, SCARA achieves similar or
better F1-score compared with current GNN baselines. For
4 out of 5 datasets with comparable results, our model out-
performs both the state-of-the-art pre-propagation approach
GBP and the scalable post-propagation baseline PPRGo.
Among other methods, GraphSAINT and GAS have gen-
erally good performance for certain settings, but face the
price of resource-demanding learning and poor consistency
across datasets.

Fig. 3 shows the validation F1-score versus training time
on representative datasets and corresponding GNN models. It

can be observed that when comparing the time consumption
to convergence, the SCARA model is efficient in reaching the
same precision faster than most methods. The performances
of GAS and PPRGo in the figure are relatively suboptimal
because they are relatively less stable and require more time
to converge beyond the display scopes in Fig. 3. It is worth
noting that some baselines fail to or only partially converge
before training terminates in tasks such as PPI.

4.3 Effect of Parameters

In this section we explain the selection of different parame-
ters. For the three parameters in Feature-Push, intuitively,
𝛼 is the PPR teleport probability of Feature-Push, which
is dependent on graph adjacency. 𝛼 is usually set to a larger
value to mitigate density for graphs with higher average de-
grees [5]. The factor 𝑟 determines the balance between left-
and right-normalization as shown in Equation (6), which is
usually correlated with the direction of propagation through
edges. In particular, when 𝑟 = 0.5, it degrades to the nor-
malized adjacency matrix �̃� presented in APPNP [22] and
PPRGo [5]. The error bound 𝜆 determines the approxima-
tion push coefficient 𝛽 in Algorithm 1. Hence, 𝜆 is used to
configure the trade-off between precision and speed in pre-
computation and tends to be larger for better efficiency.

Regarding the default selection in Table 2, we set the
values of 𝛼 and 𝑟 for shared datasets mainly in accordance
with GBP [10, 36] in order to produce comparable results.
The rest Reddit and MAG are employed with the following
strategy: we use 𝑟 = 0.5 for better comparison and generality,
while 𝛼 is decided based on graph edge density [5]. The error
bound 𝜆 can be arbitrarily large as long as it does not reduce
effectiveness, we hence uniformly set it to 𝜆 = 1 × 10−4 for
all datasets to provide aligned evaluations across datasets.

We conduct a grid search in Fig. 4 on the value ranges
of teleport probability 𝛼 and convolution coefficient 𝑟 to ex-
amine their effect. In order to prevent potential influence, we
use the single-thread scheme for experiments in this section.
It can be inferred that a larger 𝛼 has a slight improvement on
precomputation efficiency, while 𝑟 has no significant impact.
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Hence, there is a trade-off in feature PPR between propa-
gation coverage and efficiency controlled by 𝛼 : a larger 𝛼
indicates a higher probability of the propagation staying in
the current node instead of further traveling to its neighbors,
and consequently less exploration of the neighborhood. The
accuracy is relatively not sensitive with variance inside the
error range (±1%) as long as 𝛼 and 𝑟 values are not too ex-
treme. It indicates that the model is robust to the changes
of both parameters, based on which we are able to conclude
that the parameters can be determined without requiring a
sophisticated tuning.

For the base size 𝐹𝐵 and push parameter 𝛾 in Feature-
Reuse, we conduct additional experiments to empirically
explore the algorithmic sensitivity. As above experiments
show that the neural network is relatively robust and pat-
terns are hard to infer from the testing accuracy, we thence
particularly investigate the propagation stage. We use the
embedding difference, which is calculated by the average
absolute difference of each element in the embedding matrix
𝑷 comparing with SCARA without Feature-Reuse, as the
indicator of the feature PPR precision.

(a) Precomputation Time (b) Testing Accuracy

Fig. 4: Effect of propagation parameters teleport probability
𝛼 and convolution coefficient 𝑟 on SCARA (a) efficiency and
(b) testing accuracy on Reddit dataset.

(a) Precomputation Time (b) Embedding Difference

Fig. 5: Effect of reuse precision parameter𝛾 and base set size
𝐹𝐵 on SCARA (a) precomputation time and (b) average em-
bedding value difference on Reddit dataset. For comparison,
precomputation without Feature-Reuse uses 2.37s.

(a) Reddit (b) Amazon

Fig. 6: Precomputation time of SCARA and decoupling base-
lines with different parallel schemes on (a) Reddit and (b)
Amazon datasets. Note that both axes are on a log scale.

Fig. 5 presents the result on precomputation time and
precision on Reddit dataset. For comparison, single-thread
repetitive Feature-Push precomputation without Feature-
Reuse uses 2.37s. It can be observed that both 𝐹𝐵 and 𝛾
influence Feature-Reuse efficiency for less than ±0.2s. In-
tuitively, a larger set of base features 𝐹𝐵 requires more addi-
tional calculation time, hence hinder the overall efficiency.
On the contrary, the factor 𝛾 affects less on performance as
the residue vectors are still processed by subsequent calcu-
lations. The difference of embedding values is at the level
of 10−8, which is significantly smaller than the algorithmic
error bound 𝜆 = 10−4. Generally, a more aggressive reuse
scheme results in relatively higher average approximation
errors of the embedding values. We hence conclude that our
parameter settings 𝐹𝐵/𝐹 = 0.02 and 𝛾 = 0.2 are effective for
the general evaluation of SCARA.

4.4 Effect of Parallel Computation

We then employ additional experiments to study the speed-
up on precomputation time brought by parallel processing.
Particularly, we compare against the decoupling methods
PPRGo and GBP, since sampling-based baselines Graph-
SAINT and GAS cannot be fit into the similar parallel scheme
by design. Fig. 6 displays the efficiency results with the num-
ber of threads ranging from 1 to 32. Note that the precom-
putation in [25] is always single-threaded.

The experimental evaluation shows that SCARA achieves
near-linear improvement when the number of parallel work-
ers increases, demonstrating its feasibility for parallelism.
Thanks to its feature-oriented design, each feature can be
processed independently with efficient cache performance.
Generally, adopting parallelization accelerates the precom-
putation by up to 10×. However, employing 32 or more
threads does not significantly further improve the efficiency,
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especially on smaller datasets. We argue that in this case, the
main overhead becomes those non-parallelized operations.

In comparison, the two baselines PPRGo and GBP present
both longer precomputation time, as well as less relative
speed-up in parallelism. For PPRGo, the processing time
on Reddit keeps constant even when adding more threads,
implying that most of its computation expenses cannot be
optimized by employing the parallel scheme.

4.5 Effect of Feature-Reuse

To examine the contribution of Feature-Reuse technique
utilized in our SCARA model, we conduct ablation study to
compare the performance of the reuse scheme proposed in
Algorithm 2. In following notation, SCARA is the model
with Feature-Reuse in precomputation following Algo-
rithm 2. The bare iterative full-precision Feature-Push with-
out Feature-Reuse is named as SCARA-Push, and the
greedy-search based reuse scheme in [25] is regarded as
SCARA-Greedy. Similarly, we test all related methods in
single-thread execution to avoid noise.

We here consider the feature size as a factor of particular
interest, as Feature-Reuse is a feature-oriented optimiza-
tion design. We sample the node feature vectors 𝒙 in the
Reddit dataset to generate feature matrices 𝑿 ∈ R𝑛×𝐹 ′ with
different feature numbers 𝐹 ′. Using these features as input,
we respectively evaluate the performace of graph learning.
The results of average times and testing accuracies for the
three variants are given in Table 4. Element-wise embedding
value differences with regard to the SCARA-Push result are
also presented for the two reuse schemes.

By comparing the speed-up relative to SCARA-Push
without reuse, we state that Feature-Reuse substantially
reduces the precomputation time for different node feature
sizes. When the number of features increases, the algorithm
benefits more acceleration from adopting the optimization
scheme and reusing previous computations. For the full-size

Table 4: Performance of SCARA variants on precomputation
time (s), testing accuracy (%), and average embedding value
difference (×10−8) for Reddit dataset with different feature
dimensions 𝐹 ′.

Feature 𝐹 ′ 100 200 400 602

Pre. Time
SCARA-Push 0.38 0.77 1.52 2.37

SCARA-Greedy 0.30 0.56 1.08 1.54
SCARA 0.14 0.24 0.46 0.65

Accuracy
SCARA-Push 32.7 36.6 42.0 43.9

SCARA-Greedy 32.8 36.6 42.0 43.6
SCARA 32.8 36.6 42.0 44.1

Embed. Diff. SCARA-Greedy 21.0 15.0 16.5 15.6
SCARA 0.4 0.3 0.6 2.4

feature matrix with greatest improvement, SCARA achieves
3.6× speed-up compared to SCARA-Push, and 2.4× speed-
up compared to SCARA-Greedy.

Examining the reuse precision, it is inferred from Table 4
that Algorithm 2 produces less estimation error with regard
to embedding values, which implies that the convergent opti-
mization solution is not only faster but also more precise than
the SCARA-Greedy search. Meanwhile, Feature-Reuse
causes no significant difference on model effectiveness, as
minor accuracy fluctuations are under the error bound of
repetitive experiments. Interestingly, even with a feature di-
mension of 𝐹 ′ = 100, the model achieves 32.8% testing
accuracy, indicating that our feature PPR embedding matrix
is capable to store adjacency and feature information that is
sufficient for model learning.

5 Conclusion

In this paper, we propose SCARA, a scalable Graph Neu-
ral Network algorithm with feature-oriented optimizations.
Our theoretical contribution includes showing the SCARA
model has a sub-linear complexity that efficiently scales-up
the graph propagation by two algorithms, namely Feature-
Push and Feature-Reuse. We conduct extensive experi-
ments on various datasets to demonstrate the time and mem-
ory scalability of SCARA in learning and inference. Our
model is efficient to process billion-scale graph data and
achieves up to 800× faster than the current state-of-the-art
scalable GNNs in precomputation, while maintaining com-
parable or better accuracy.

Although our model improves the scalability of GNN
propagation by employing the decoupling strategy, it is dis-
covered that the architecture simplification may be less flex-
ible when applied to graph variants that do not rely on
neighborhood-based propagation, such as graphs under het-
erophily [13, 28, 24]. We believe that exploring decoupling
schemes that are suitable for different variants of graphs is
a promising future direction for further expanding our pro-
posed feature-oriented framework.
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