Machine Learning for Subgraph Extraction: Methods, Applications and Challenges

Kai Siong Yow Ningyi Liao

Siqiang Luo Reynold Cheng

49th International Conference on Very Large Data Bases Vancouver, Canada - August 28 to September 1, 2023

About the Presenters

Reynold Cheng Professor, HKU

- 🖂 ckcheng@cs.hku.hk
- https://www.reynold.hku.hk
- Data science, Big graph analytics, Uncertain data management

Siqiang Luo

Assistant Professor, NTU

- 🖂 siqiang.luo@ntu.edu.sg
- https://siqiangluo.com
- Graph algorithms/systems, KV systems, ML data management

Ningyi Liao Ph.D Candidate, NTU Niao0090@e.ntu.ec

- ✓ liao0090@e.ntu.edu.sg
- https://nyliao.github.io
- ML graph algorithms, Graph Neural Network

Kai Siong Yow SASEA Fellow, NTU

- kaisiong.yow@ntu.edu.sg
- Graph theory, Data management, Computational mathematics

Outline

Q&A 20 min

Outline

Graphs Are Everywhere

Social Networks

Transportation Networks

Molecular Networks

Human Brain Networks

Knowledge Graphs

Biological Networks

Road Networks

Tag Networks

Images downloaded from the Internet.

Graph Research in Recent Years

Graph research percentage (in total)

Graph research percentage (selected venues)

Subgraph Extraction – Why 😰

A sub-graph is a part of the original graph

Effective exploration on large graphs

Identify important structures

Easier analysis and visualisation

Subgraph Research in Recent Years

Subgraph in graph research (in total)

Subgraph in graph research (selected venues)

Subgraph Extraction is Widely Adopted

Knowledge Discovery Knowledge Graph

Advertisement Recommendation E-commerce

Friend Suggestion Social Network

Drug Discovery & Function Analysis Protein Interaction

Facial Recognition Face Landmark Image

Pattern Discovery Inter-firm network

Transaction Network

ML for Subgraph Extraction – Why 🕐

Limited Flexibility

 Predefined schemes are rigid when applied to varying scenarios

Limited Efficiency

 NP-hardness results in expensive overhead of algorithmic solutions

MAXIMUM COMMON SUBGRAPH

SUBGRAPH ISOMORPHISM COUNTING

A Search Tree

Common Graph ML Pipeline

Data Preparation Model Training Model Inference

Output

Common Graph ML Approaches

GNN: Graph Neural Network

 Iteratively aggregates vertex neighbour information by learnable weights to learn representation

Common Graph ML Approaches

GCL: Graph Contrastive Learning

• A type of semi-supervised learning that generates and learns from similar and dissimilar graph variants

Common Graph ML Approaches

RL: Reinforcement Learning

Outline

COMMUNITY SEARCH

CS: COMMUNITY SEARCH

- Variant of COMMUNITY DETECTION
- Deduce a subgraph *H* that
 - **Contains** a given query vertex *v* (or a set of query vertices)
 - **Satisfies** the cohesiveness and connectivity constraints

CS: The Applications

- Graph: social network
- Vertex: user
- Edge: friend connection
- Query: given user
- **Task:** Users tend to make friends within a same community. *How to search for a community that contains a particular user?*

CS: The Applications

Knowledge Base

Graph: knowledge graph Task: discovery new connections in an area

Protein Interaction

Vertex: protein | Edge: interaction Task: discover functional ties between proteins

E-commerce

Graph: user community

Task: ad recommendation from other community members

k-core

[KDD'10; SIGMOD'14; VLDB'16; VLDB'21]

A maximal connected subgraph H such that $deg(v) \ge k$ for each $v \in H$

k-core

[KDD'10; SIGMOD'14; VLDB'16; VLDB'21]

k-truss

[SIGMOD'14; VLDB'15; VLDB'17; ICDE'21]

A maximal connected subgraph *H* such that every edge $e \in E(H)$ belongs to at least k - 2 triangles in *H*

k-core [KDD'10; SIGMOD'14; VLDB'16; VLDB'21]

k-truss

[SIGMOD'14; VLDB'15; VLDB'17; ICDE'21]

k-clique [SIGMOD'13; TKDE'17]

A connected subgraph *H* such that *H* is a complete graph of order *k*

k-core [KDD'10; SIGMOD'14; VLDB'16; VLDB'21]

k-truss [SIGMOD'14; VLDB'15; VLDB'17; ICDE'21]

k-clique [SIGMOD'13; TKDE'17]

k-edge-connected component [SIGMOD'15; CIKM'16]

A connected subgraph *H* such that *H* remains connected if less than *k* edges are removed

k-core [KDD'10; SIGMOD'14; VLDB'16; VLDB'21]

k-truss [SIGMOD'14; VLDB'15; VLDB'17; ICDE'21]

k-clique [SIGMOD'13; TKDE'17]

k-edge-connected component [SIGMOD'15; CIKM'16]

ACQ [VLDB'16] ATC [VLDB'17] Deterministic methods that apply on attributed graphs

k-core [KDD'10; SIGMOD'14; VLDB'16; VLDB'21]

k-truss [SIGMOD'14; VLDB'15; VLDB'17; ICDE'21]

k-clique [SIGMOD'13; TKDE'17]

k-edge-connected component [SIGMOD'15; CIKM'16]

 ACQ
 ATC

 [VLDB'16]
 [VLDB'17]

Predefined patterns are rigid when applied to varying scenarios

Recent Learning Framework

Recent Learning Framework

ICS-GNN [VLDB'21]

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive community search via graph neural network. PVLDB 2021.

- Yield high-quality communities with interactive labeling
- No predefined pattern needed

QD/AQD-GNN [VLDB'22]

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.

- Model the attribute relations
- Process structure and attribute simultaneously

COCLEP [ICDE'23]

Li L, Luo S, Zhao Y, Shan C, Qin L, Wang Z. COCLEP: Contrastive Learning-based Semi-Supervised Community Search. ICDE 2023.

- Utilise graph contrastive learning
- Reduce the amount of training labels

ICS-GNN	
	Input query vertex
Iterative Learning	
& Search	

Input query vertex

Candidate Subgraph Construction

Iterative Learning & Search

GNN Training and Inference

- Partial edge enhancement strategy
- Locate useful vertices
- Output model that predicts the probabilities of nodes belonging to the community

Input query vertex

Candidate Subgraph Construction

Iterative Learning & Search

GNN Training and Inference

Community Discovery

- Partial edge enhancement strategy
- Locate useful vertices
- Output model that predicts the probabilities of nodes belonging to the community
- Find community with maximum GNN prediction score

Input query vertex

Candidate Subgraph Construction

Iterative Learning & Search

GNN Training and Inference

Community Discovery

Update labelled vertices

- Partial edge enhancement strategy
- Locate useful vertices
- Output model that predicts the probabilities of nodes belonging to the community
- Find community with maximum GNN prediction score

QD/AQD-GNN

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.

QD/AQD-GNN

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.

QD/AQD-GNN

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.

How to reduce the demand of training labels?

Li L, Luo S, Zhao Y, Shan C, Qin L, Wang Z. COCLEP: Contrastive Learning-based Semi-Supervised Community Search. ICDE 2023.
CS: Summary

ICS-GNN

- Interactively explore and refine the community
- Trains GNN model for each query

QD/AQD-GNN

- QD-GNN: two-branch model that encodes information from both queries and graphs
- AQD-GNN: Extend by fusing attributes into the model

COCLEP

• Focus on reducing the label demands by using GCL

Outline

Q&A

COMMUNITY SEARCH

MAXIMUM COMMON SUBGRAPH

Conclusion & Future Directions

COMMUNITY DETECTION

CD: COMMUNITY DETECTION

- Partition a graph into a set of communities
- A community is a subgraph that satisfy cohesiveness and connectivity constraints
- Communities can be either disjoint or overlapping

Overlapping Communities

Disjoint Communities

CD: The Applications

- Graph: social network
- Vertex: user
- Edge: friend connection
- **Task:** How to detect communities containing similar users and close connections?

CD: The Applications

Friend Suggestion

Graph: social network Task: suggest friendship in the same community

Biological systems

Graph: protein Interaction Task: identify functional groups without prior knowledge

Fraud Detection

Graph: transaction network Task: identify unusual patterns of potential fraud occurrences

Classical Methods

Kernighan-Lin 1970 Barnes 1982

Hierarchical Clustering

PNAS'02 Phys. Rev. E '04 Phys. A '18

Spectral Clustering

Ann. Stat. '13 Comput.

Neurosci. '14

Classical Framework

GNN CD Framework

Su, X., et al. (2022). A Comprehensive Survey on Community Detection with Deep Learning. IEEE Transactions on Neural Networks and Learning Systems.

GNN CD Framework

Su, X., et al. (2022). A Comprehensive Survey on Community Detection with Deep Learning. IEEE Transactions on Neural Networks and Learning Systems.

LGNN

- Simultaneous on graph and line graph
- Incorporate non-backtracking operator
- Represent edge adjacency information

Conventional GNN classification task

- Cross-entropy loss
- Require labelled data

CommDGI

GNN: Deep Graph Infomax

- Maximise graph mutual information
- Contrastive method of negative samples
- Unsupervised MI objective

- Differentiable K-means clustering
- Soft K-means on representation
- Optimise community MI and modularity

Zhang, T., et al. (2020). CommDGI: Community Detection Oriented Deep Graph Infomax. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 1843–1852.

CD: Summary

- Learning-based methods such as GNNs improve the CD by more flexible model designs and data processing
- The GNN for CD framework usually includes a GNN representation module and a detection module

	LGNN	CommDGI
Paradigm	Supervised	Unsupervised
Community	Disjoint/Overlap	Disjoint
GNN	Line GNN	Deep Graph Infomax
Detection	Classification	Joint Optimisation

Outline

Conclusion & Future Directions

GRAPH ISOMORPHISM

GRAPH ISOMORPHISM (non-labeled):

Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, there exists a bijection f: $V_1 \rightarrow V_2$ such that:

edge $uv \in E_1 \iff$ edge $f(u)f(v) \in E_2$

GRAPH ISOMORPHISM

GRAPH ISOMORPHISM (labeled):

Given two graphs $G_1 = (V_1, E_1, L_1)$ and $G_2 = (V_2, E_2, L_2)$, there exists a bijection $f: V_1 \rightarrow V_2$, such that:

1) Edge: $uv \in E_1 \iff edge f(u)f(v) \in E_2$

2) Label: $L_1(v) = L_2(f(v))$

Max Common Subgraph

MCS: Max Common Subgraph (labeled, node-induced):

Given two graphs $G_1 = (V_1, E_1, L_1)$ and $G_2 = (V_2, E_2, L_2)$, find the largest sets $V_1' \subseteq V_1$ and $V_2' \subseteq V_2$, there exists a bijection $f: V_1' \to V_2'$, such that:

1) $u, v \in V_1'$, edge $uv \in E_1 \iff edge f(u)f(v) \in E_2$

2) $v \in V_1'$, vertex label $L_1(v) = L_2(f(v))$

MCS: The Applications

- Graph: molecule
- Vertex: atom
- Edge: chemical bond
- Task: Molecules that have similar partial structures are expected to have similar drug efficacy. *How to find the maximum common partial structures in two molecules?*

Yasuharu Okamoto. 2020. Finding a Maximum Common Subgraph from Molecular Structural Formulas through the Maximum Clique Approach Combined with the Ising Model. ACS Omega 5 (22), 13064-13068.

MCS: The Applications

NtCreateDirectoryObject(OUT DirectoryHandle -> 1,, IN ObjectAttributes -> A); NtCreateFile(OUT FileHandle -> 2, ..., IN ObjectAttributes -> B,.....); NtCreateFile(OUT FileHandle -> 3, ..., IN ObjectAttributes -> C,.....);

NtCreateSection(OUT SectionHandle -> 4, ... , IN ObjectAttributes->D,, IN FileHandle -> 2);

Molecule Search

Graph: molecule graph DB Task: find molecules in DB similar to query graph

Software Analysis

Vertex: kernel object | Edge: call Task: discover specific malware behaviours in software

Facial Recognition

Vertex: landmark in image Task: compare similarity of given image to DB

MCS Search Framework

McSplit Branch and Bound:

McSplit+RL

RL alongside **BnB** Search:

Y. Liu, C. M. Li, H. Jiang, and K. He. 2020. A Learning Based Branch and Bound for Maximum Common Subgraph Related Problems. Proceedings of the AAAI Conference on Artificial Intelligence 34, 03 (2020), 2392–2399.

End-to-end RL BnB Search:

Reward of RL: find the max subgraph

Goal of GNN: learn to achieve best reward

GNN learning the current state

Decide search order & select vertex pair

Y. Bai, D. Xu, Y. Sun, and W. Wang. 2020. GLSearch: Maximum Common Subgraph Detection via Learning to Search. In ICML. 588-598.

MCS: Summary

- The MCS problem is NP-hard. Conventional algorithms are based on Branch and Bound search under heuristic rules
- The search can be powered by **Reinforcement Learning**: design reward (learning goal) and action (one step of search)
- RL can improve the search by reaching solutions faster

Model	Reward	Action
McSplit+RL	Optimise BnB search	Select vertex of best reward
GLSearch	Find max subgraph	Perform BnB search

Outline

Q&A

COMMUNITY SEARCH

MAXIMUM COMMON SUBGRAPH

Conclusion & Future Directions

SUBGRAPH ISOMORPHISM COUNTING

SIC: SUBGRAPH ISOMORPHISM COUNTING (labeled, heterogeneous):

Given a query graph $G_q = (V_q, E_q, L_q, C_q)$ and a corpus graph $G_c = (V_c, E_c, L_c, C_c)$, return the number of subgraphs in G_c such that those subgraphs are isomorphic to G_q

SIC: The Applica

- Corpus Graph: road neuvor
- Query Graph: connectivity patterns

 M_8

M9

Mg

- Vertex: intersections
- Edge: road segments
- **Task:** What is the frequency of certain connectivity patterns in a road network?

G Shen, et al. 2022. Motif discovery based traffic pattern mining in attributed road networks. Knowledge-Based Systems 250.

SIC: The Applications

Protein Structure

Graph: protein interaction

Task: count frequency of certain interaction patterns in DB

DBMS Bug Detection

Graph: DBMS schema tables Task: find redundant queries in the schema graph

Pattern Discovery

Graph: inter-firm network

Task: identify and count certain connection patterns

SIC: The Challenge

• Exact SIC problem is NP-hard, resulting in exponential complexity

Ribeiro, P., Paredes, P., Silva, M. E. P., Aparicio, D., & Silva, F. (2022). A Survey on Subgraph Counting: Concepts, Algorithms, and Applications to Network Motifs and Graphlets. ACM Computing Surveys, 54(2), 1–36.

Conventional Solution: Tree Search

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs. PAMI 26, 10 (2004), 1367–1372.
Conventional Solution: Tree Search

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs. PAMI 26, 10 (2004), 1367–1372.

Question-Answering Framework

The SIC Problem:

Query Graph

Input

Corpus Graph

Answer of query

The Question-Answering Problem:

Question-Answering Framework

SIC Problem under QA Framework:

Corpus Graph

DIAMNet

What are effective representation and regression models? GIN + DIAM

ALSS

How to apply RDBMS techniques? Sketch Learning + Active Learning

NeurSC

How to apply learning-based techniques? Inter-Graph + Adversarial Training

H. Wang, R. Hu, Y. Zhang, L. Qin, W. Wang, and W. Zhang. 2022. Neural Subgraph Counting with Wasserstein Estimator. In SIGMOD. 160–175.

SIC: Summary

- The SIC problem is NP-hard. Conventional enumeration-based algorithm is limited by the graph size
- The **Question-Answering Framework** enables ML algorithms: representation (graph to embedding) & regression (estimate count)
- ML approaches output favourable estimation with linear complexity

Model	Representation	Regression
DIAMNet	GIN	Attention
ALSS	Sketch learning	Active learning
NeurSC	Intra- & inter-graph	Adversarial training

Outline

🗩 Q&A

Summary: ML for Subgraph

Subgraph Problem	Paradigm	Algorithm	Advance	Method
COMMUNITY SEARCH		GNN	õ õ	ICS-GNN [VLDB, 2021]
		GNN	õ õ	QD-GNN [VLDB, 2022]
		GNN	ő Ö	CGNP [arxiv, 2022]
	•	GNN	ő Ö 🕅	COCLEP [ICDE, 2023]
COMMUNITY DETECTION		GNN	ø	LGNN [ICLR, 2019]
	•	GNN	ő X	MRFasGCN [AAAI, 2019]
	0	GNN	ø X	NOCD [DLG, 2019]
	0	GNN	Ś	AGC [IJCAI, 2019]
	0	GNN	Ś	AGE [KDD, 2020]
	0	GNN, k-means	ø	CommDGI [CIKM, 2020]
	0	GNN	Ś	DAEGC [IJCAI, 2019]
	0	GNN	Ś	SDCN [WWW, 2020]
	0	GNN	ø	O2MAC [WWW, 2020]

Supervised O Semi-supervised O Unsupervised O Reinforcement

Summary: ML for Subgraph

MAX COMMON SUBGRAPHImage: Search + RLImage: Search + RLImage: McSplit+RL [AAAI, 2020]Image: SubgraphImage: GNN, Search + RLImage: GLSearch [ICML, 2020]Image: SubgraphImage: GNNImage: GNNImage: GLSearch [ICML, 2020]Image: SubgraphImage: GNNImage: GNNImage: GLSearch [ICML, 2020]Image: SubgraphImage: GNNImage: GNNImage: GLSearch [ICML, 2020]Image: SubgraphImage: GNNImage: GLSearch [ICML, 2020]Image: SubgraphImage: GNNImage: GLSearch [ICML, 2020]	Subgraph Problem	Paradigm	Algorithm	Advance	Method	
MAX COMMON SUBGRAPHImage: GNN, Search + RLImage: GLSearch [ICML, 2020]Image: GNNImage: GNNImage: GNNImage: GLSearch [ICML, 2020]Image: GNNImage: GNNImage: GLSearch [ICML, 2020]Image: GNNImage: GNNImage: GLSearch [ICML, 2020]	Max Common Subgraph	O	Search + RL	Ŏ	McSplit+RL [AAAI, 2020]	
GNN Image: Constraint of the second state of the second stat			GNN, Search + RL	ø	GLSearch [ICML, 2020]	
● GNN ⑦ ☑ DIAMNet [SIGKDD, 2020]			GNN	ő Ö	NeuralMCS [preprint, 2019]	
	Subgraph Isomorphism Counting	0	GNN	Ò 🖾	DIAMNet [SIGKDD, 2020]	
● GNN + Active Learning ⊘ 🖾 ALSS [SIGMOD, 2021]		0	GNN + Active Learning	Ò 🖾	ALSS [SIGMOD, 2021]	
SUBGRAPH ISOMORPHISM • GNN + Adversarial Learning • 🕅 NeurSC [SIGMOD, 2022]		0	GNN + Adversarial Learning	Ö 🖾	NeurSC [SIGMOD, 2022]	
COUNTING GNN Ø LRP [NIPS, 2020]			GNN	Ś	LRP [NIPS, 2020]	
GNN © RNP-GNN [arxiv, 2021]			GNN	Ś	RNP-GNN [arxiv, 2021]	
GNN MPNN [AAAI, 2022]			GNN	Ś	DMPNN [AAAI, 2022]	
Active Learning Š ActiveMatch [ICBD, 2021]			Active Learning	Ŏ	ActiveMatch [ICBD, 2021]	
GNN + RL © O RL-QVO [arxiv, 2022]		0	GNN + RL	ő Ö	RL-QVO [arxiv, 2022]	
GNN © ONeuroMatch [arxiv, 2020]	SUBGRAPH MATCHING		GNN	ő Ö	NeuroMatch [arxiv, 2020]	
GNN MPNN [AAAI, 2022]			GNN	Ś	DMPNN [AAAI, 2022]	

Supervised O Semi-supervised O Unsupervised O Reinforcement

Scalability

Summary: Focus of Approaches

Summary: Pros and Cons of ML Approaches

? Subgraph Problem	ි Flexibility	Č Efficiency	Training Data	Learning Cost
COMMUNITY SEARCH				
 COMMUNITY DETECTION				
Maximum Common Subgraph				
SUBGRAPH ISOMORPHISM COUNTING				

Future Directions Explore More Models for Subgraph Problems **Self-Supervised** Generative, Active, Transfer Reinforcement Enumeration, Optimization **Semi-Supervised** Contrastive, Adversarial Unsupervised Embedding, Clustering **Supervised** Regression, Classification

Future Directions

Employ hybrid models of ML and non-ML approaches

Non-ML Approach

- Second Second
- © Easy-explanation
- Mature strategy

ML Approach

- O High Flexibility
- Better efficiency
- Model variety

Future Directions

Extend to other graph problems

DENSEST SUBGRAPH

Conventional: Network Flow

KClist++ [VLDB'20]: Sample & Search

B. Sun, et al. 2020. KClist++: a simple algorithm for finding k-clique densest subgraphs in large graphs. Proc. VLDB Endow. 13, 10, 1628–1640

Ma et al [SIGMOD'22]: Convex Programming

C. Ma, et al. 2022. A Convex-Programming Approach for Efficient Directed Densest Subgraph Discovery. In SIGMOD'22, 845–859.

Future Directions

Extend to other graph problems

BIPARTITE SUBGRAPH

Conventional: BnB Search

BCList++ [VLDB'22]: Backtrack & Prune

J. Yang, Y. Peng, and W. Zhang. (p,q)-biclique Counting and Enumeration for Large Sparse Bipartite Graphs. PVLDB, 15(2): 141-153, 2022.

FastBB [SIGMOD'23]: Symmetric Branching

K. Yu and C. Long. 2023. Maximum k-Biplex Search on Bipartite Graphs: A Symmetric-BK Branching Approach. Proc. ACM Manag. Data.

Outline

THANK YOU

Slides available

49th International Conference on Very Large Data Bases Vancouver, Canada - August 28 to September 1, 2023