
Machine Learning for Subgraph Extraction:
Methods, Applications and Challenges

49th International Conference on Very Large Data Bases
Vancouver, Canada - August 28 to September 1, 2023

Kai Siong Yow Ningyi Liao Siqiang Luo Reynold Cheng



About the Presenters

Kai Siong Yow

Siqiang Luo

Ningyi Liao

siqiang.luo@ntu.edu.sg

kaisiong.yow@ntu.edu.sg

ckcheng@cs.hku.hk

Reynold Cheng

SASEA Fellow, NTU

Graph theory, Data management, 
Computational mathematics

Ph.D Candidate, NTU
liao0090@e.ntu.edu.sg

ML graph algorithms, 
Graph Neural Network

Professor, HKU

https://www.reynold.hku.hk
Data science, Big graph analytics, 
Uncertain data management

Assistant Professor, NTU

https://siqiangluo.com
Graph algorithms/systems, KV 
systems, ML data management

https://nyliao.github.io



Outline

Introduction Siqiang Luo, 10 min

COMMUNITY SEARCH
Siqiang Luo 12 min

COMMUNITY DETECTION
Ningyi Liao 10 min

Q&A 5 min

MAXIMUM COMMON SUBGRAPH
Ningyi Liao 12 min

SUBGRAPH ISOMORPHISMCOUNTING
Reynold Cheng 12 min

Conclusion & Future Directions

Q&A

Reynold Cheng, 10 min

20 min



Outline

Introduction Siqiang Luo, 10 min



Graphs Are Everywhere

Social Networks

Tag Networks Road NetworksBiological NetworksTransportation Networks

Molecular Networks Human Brain Networks Knowledge Graphs

Images downloaded from the Internet.

(a) (b)

Figure 2: Input data generation as road network graphs. (a) Linköping road networks represented as a graph.

Colors represent different ground truth labels of road types. (b) A closeup of Linköping road networks

represented as a graph with a line graph representation overlaid in black. Colors represent different ground

truth labels of road types.

4.1. Input Dataset

To address the main problems of this project, road network datasets are represented

as graphs composed of vertices and edges. To test transductive and inductive capabili-

ties of the assessed methods, we generate two datasets of road networks. Using Open

Street Map (OSMnx [44]), we extract the crowd-sourced geographic information of

road networks in Swedish Cities from OSMnx.

Both datasets are preprocessed in the following way. The OSMnx data of driving

roads is extracted from a 14 km ⇥ 14 km tile centered at the city centroid. The resulting

graph is simplified such that intersections are consolidated within a 10 m distance and

interstitial nodes are reduced. Directions of edges are removed and parallel edges are

consolidated, a limitation necessary to apply the graph representation learning meth-

ods.

We convert graph G into a line graph L(G), as described in Section 3.1. Each edge

of G becomes a node in L(G) and two edges that share a common node in G become

an edge in L(G). Figure 2 illustrates edges of the original graph G colored by their

different ground truth road type labels. Overlaid is the line graph representation with

black edges and colored nodes corresponding to road type label.

15



Graph Research in Recent Years

SIGMOD VLDB ICDE

TKDE WWW KDD

2023

2023

50%

50%

Graph research percentage
(in total)

Graph research percentage
(selected venues)

2019

2020

2021

2022

2023 28%
24%

21%
17%

14%

’19

’19



Subgraph Extraction – Why

A sub-graph is a part 
of the original graph

Effective exploration on large graphs

Identify important structures

Easier analysis and visualisation



Subgraph Research in Recent Years

SIGMOD VLDB ICDE

TKDE WWW KDD

2023

2023

25%

25%

Subgraph in graph research
(in total)

Subgraph in graph research
(selected venues)

2019

2020

2021

2022

2023

2019

2020

2021

2022

2023 6%
9%

6%
8%
8%

’19

’19



Subgraph Extraction is Widely Adopted

Subgraph
Extraction

Friend 
Suggestion
Social Network

Advertisement 
Recommendation
E-commerce

Knowledge 
Discovery
Knowledge Graph

Drug Discovery &
Function Analysis 
Protein Interaction

Query 
Debugging
DBMS Schema

Fraud 
Detection
Transaction Network

Pattern 
Discovery
Inter-firm network

Facial 
Recognition
Face Landmark Image



ML for Subgraph Extraction – Why
Limited Flexibility

• Predefined schemes are 
rigid when applied to 
varying scenarios

COMMUNITY DETECTION

COMMUNITY SEARCH

𝒌-core



ML for Subgraph Extraction – Why
Limited Efficiency

• NP-hardness results in 
expensive overhead of 
algorithmic solutions

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JANUARY 2017 5

u3

u4

u2

u5

lb

ldlc

la

u1

ld

Graph G1 (Pattern graph)

v3

v13

v2

v12

lb

ld

lc

la

v1

lc
v4

v6
lc

v5
ld

v10 v9 v8

v7v11

ldld

la lb
la

Graph G2 (Target graph)

Sets of G1

V1 {u1, u2, u3, u4, u5}
E1 {(u1, u2), (u2, u4), (u2, u5), (u3, u2), (u3, u4), (u4, u3), (u4, u5), (u5, u1)}
Lv1 {la, lb, lc, ld}
�v1 {(u1, ld), (u2, la), (u3, lb), (u4, ld), (u5, lc)}

Sets of G2

V2 {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13}
E2 {(v1, v2), (v2, v1), (v2, v12), (v2, v13), (v3, v2), (v3, v4), (v3, v13), (v4, v6),

(v9, v8), (v4, v13), (v5, v4), (v6, v5), (v6, v7), (v7, v8), (v8, v7), (v8, v13),

(v9, v10), (v9, v13), (v10, v12), (v11, v10), (v12, v1), (v12, v11), (v13, v3),

(v13, v6), (v13, v9), (v13, v12)}
Lv2 {la, lb, lc, ld}
�v2 {(v1, lc), (v2, la), (v3, lb), (v4, la), (v5, ld), (v6, lc), (v7, ld), (v7, la),

(v9, lb), (v10, la), (v11, ld), (v12, lc), (v13, ld)}

Mapping

M {(u1, v5), (u2, v4), (u3, v3), (u4, v13), (u5, v6)}

Fig. 1: On the left the pattern and the target graph. On the right the corresponding sets together with the functions for obtaining
node and edge attributes. As edges are unlabeled, the sets Le1 and Le2 are not present and the functions �e1 and �e2 not
defined. On the bottom right the mapping function satisfying the subgraph isomorphism.

s0

s1

s4

s2

s3

s5

s6

s9

s8

u3

u4

u2

v3

v13

v4

G1(s4) G2(s4)

s10 s11

~ ~

s7

si
fM(si)

s0 ;
s1 {(u3, v3)}
s2 {(u3, v3), (u4, v13)}
s3 inconsistent

s4 {(u3, v3), (u4, v13), (u2, v4)}
s5 {(u3, v3), (u4, v13), (u2, v4), (u5, v6)}
s6 {(u3, v3), (u4, v13), (u2, v4), (u5, v6), (u1, v5)}
s7 inconsistent

s8 {(u3, v9)}
s9 {(u3, v9), (u4, v13)}
s10 inconsistent

s11 inconsistent

Fig. 2: The state space (on the left) explored by VF3. The state s6 is a goal state as it represents a coherent complete matching.
In white, the inconsistent states s3, s7, s10, s11. They are not generated as they do not satisfy the feasibility rules (see Section
III-F). Details about the reason why s3, s7, s10 are inconsistent are given Figures 6, 7 and 8.

A similar definition can be given for fV2. Figure 3(a) shows
the feasibility sets related to the state s2 of the SSR expansion
of Figure 2.

While the feasibility rules of VF2 were only based on the
above sets, our experience with that algorithm has led us to
improve the efficiency of those rules (i.e. reducing the number
of visited states) by exploiting the structural asymmetries
present in the graphs to be matched.

Partitioning the nodes of the graphs is a way for making the
asymmetries evident; in particular, we partition the nodes of
the two graphs using a node classification function ensuring
that if two nodes are in different partitions, they will never
be matched in a consistent state. The converse may not be
true: even if two nodes are in the same partition, it does not
mean that they can be matched in a consistent mapping. We
propose here a redefinition of the feasibility sets incorporating

these partitions, so making the algorithm able to exploit this
additional information for pruning unfruitful states.

The node classification function may embody any parti-
tioning criterion that makes sense for the problem or the
application at hand. A very general criterion is to base the
partitioning on the node labels, since by Eq. 5 we know
that nodes with different labels cannot be matched together.
However this criterion can be complemented with other kinds
of semantic or structural information: for example, in a
chemoinformatics application we may use the fact that the
node is or is not part of an aromatic ring. Formally, we define
a node classification function  : V1 [ V2 ! C, that assigns
each node to a class ci 2 C = {c1, c2, . . . , cq}, such that
(u, v) 2 M )  (u) =  (v), i.e. nodes mapped each other
in any of the possible solutions M must belong to the same
class.

SUBGRAPH ISOMORPHISMCOUNTING

MAXIMUM COMMON SUBGRAPH

A Search Tree



Common Graph ML Pipeline

Graph

Attribute

Query

Data 
Preparation

Models

Model 
Training

Model 
Inference Output

tain the query graph, or vice versa [19, 20, 25]; and (3) full
structure similarity search: find structures that are similar
to the query graph [17, 24, 18]. These kinds of queries are
very useful within their own applications. For example, in
substructure search, a user may not know the exact com-
position of the full structure he wants, but requires that it
contain a set of small functional fragments.

A common problem in substructure search is: what if no
matches occur for a given query graph? In this situation,
a subsequent query refinement process has to be taken in
order to find the structures of interest. Unfortunately, it is
often too time-consuming for a user to perform manual re-
finements. One solution is to ask the system to find graphs
that nearly match the query. This similarity search strategy
is more appealing since the user can first define the portion
of the query for exact matching and let the system change
the remaining portion slightly. The query could be relaxed
progressively until a relaxation threshold is reached or a rea-
sonable number of matches are found.

N

N

N

N

O

O

(a) caffeine

N

N

N

N

O

O

(b) thesal

N
N

S

O O

N

N
N

N

O

O

(c) viagra

Figure 1: A Chemical Database

N

N

N

N

O

Figure 2: A Query Graph

Example 1. Figure 1 is a chemical dataset with three
molecules. Figure 2 shows a substructure query. Obviously,
no match exists for this query graph. If we relax the query
with one edge miss, caffeine and thesal in Figures 1(a) and
1(b) will be good matches. If we relax the query further, the
structure in Figure 1(c) could also be an answer.

Unfortunately, few systems are available for this kind of
search scheme in large scale graph databases. The existing
tools such as ChemIDplus could only provide the full struc-
ture similarity search and the exact substructure search.
Other studies usually focus on how to compute the sub-
structure similarity between two graphs efficiently [15]. This
leads to the linear complexity with respect to the graph
database size since each graph in the database has to be
checked.

Given that the pairwise substructure similarity computa-
tion is very expensive, practically it is not affordable in a
large database. A näıve solution is to form a set of sub-
graph queries with one or more edge deletions and then use
the exact substructure search. This does not work when the
number of deletions is more than 1. For example, if we al-
low three edges to be deleted in a 20-edge query graph, it
may generate

(

20
3

)

= 1140 substructure queries, which is too

expensive to check. Therefore, a better solution is greatly
preferred.
Our Contributions. In this paper, we propose a feature-
based structural filtering algorithm, called Grafil (Graph
Similarity Filtering) to perform substructure similarity search
in a large scale graph database. Grafil models each query
graph as a set of features and transforms the edge deletions
into the feature misses in the query graph. With an up-
per bound on the maximum allowed feature misses, Grafil
can filter many graphs directly without performing pairwise
similarity computation. As a filtering technology, Grafil will
improve the performance of the existing pairwise substruc-
ture similarity search systems as well as the näıve approach
discussed above in large graph databases.

To facilitate the feature-based filtering, we introduce two
data structures, feature-graph matrix and edge-feature ma-
trix. The feature-graph matrix is an index structure to com-
pute the difference in the number of features between a query
graph and graphs in the database. The edge-feature matrix
is built on the fly to compute a bound on the maximum
allowed feature misses based on a query relaxation ratio.

It is shown that using too many features will not improve
the filtering performance due to a frequency conjugation phe-
nomenon identified through our study. This counter intu-
itive result inspires us to identify better combinations of fea-
tures for filtering purposes. Therefore, we develop a multi-
filter composition strategy, where each filter uses a distinct
and complimentary subset of the features. The filters are
constructed by a hierarchical, one dimensional clustering al-
gorithm that groups features with similar selectivity into a
feature set. The experimental result shows that the multi-
filter strategy can improve performance significantly for a
moderate relaxation ratio. To our best knowledge, we are
not aware of any previous work using feature clustering to
improve the filtering performance.

A significant contribution of this study is an examina-
tion of an increasingly important search problem in graph
databases and the proposal of a feature-based filtering al-
gorithm for efficient substructure similarity search. The de-
velopment of our method explores the structural filtering
algorithm in this new field. Moveover, the concept pre-
sented in Grafil can be applied to searching approximate,
non-consecutive sequences, trees, and other complicated struc-
tures as well.

The rest of the paper is organized as follows. Section 2 de-
fines the preliminary concepts. We introduce our structural
filtering technique in Section 3, followed by an exploration of
feature set selection using clustering techniques in Section 4.
Section 5 describes the algorithm implementation, while our
performance study is reported in Section 6. Related work is
presented in Section 7. Section 8 concludes our study.

2. PRELIMINARY CONCEPTS
Graphs are widely used to represent complex structures

that are difficult to model. In a labeled graph, vertices and
edges are associated with attributes, called labels. The at-
tributes could be tags in XML documents, atoms and bonds
in chemical compounds, genes in biological networks, and
object descriptors in images. Using labeled graphs or un-
labeled graphs depends on the application need. However,
the filtering algorithm we proposed in this paper can handle
both types efficiently.

The vertex set of a graph G is denoted by V (G) and the



Common Graph ML Approaches

Layer 1

Layer 2

Layer 3

Vertex Representation

Weights

Weights

GNN: Graph Neural Network
• Iteratively aggregates vertex neighbour information by 

learnable weights to learn representation

Aggregation

Aggregation
Message 
Passing



Common Graph ML Approaches

Original Graph

Transformation 1

Transformation 2

Representation 1

Representation 2

Neural 
Network

GCL: Graph Contrastive Learning
• A type of semi-supervised learning that generates and 

learns from similar and dissimilar graph variants

Graph Variant 1

Graph Variant 2



Common Graph ML Approaches

State

Agent

Environment

ActionReward

RL: Reinforcement Learning
• An agent interacts with the graph environment to learn to 

maximise the reward over a course of actions

Graphs

Learning-base
Algorithms



Outline

COMMUNITY SEARCH
Siqiang Luo 12 min



CS: COMMUNITY SEARCH

• Variant of COMMUNITY DETECTION

• Deduce a subgraph H that
• Contains a given query vertex v (or 

a set of query vertices)

• Satisfies the cohesiveness and 
connectivity constraints

COMMUNITY SEARCH

Query Vertex

Community H



CS: The Applications
• Graph: social network

• Vertex: user

• Edge: friend connection

• Query: given user

• Task: Users tend to make friends 
within a same community. How 
to search for a community that 
contains a particular user?

Query User
Suggestion

Community



CS: The Applications

E-commerce
Graph: user community
Task: ad recommendation from 
other community members 

Protein Interaction
Vertex: protein | Edge: interaction
Task: discover functional ties 
between proteins

Knowledge Base
Graph: knowledge graph
Task: discovery new 
connections in an area



Classical Metrics
𝒌-core
[KDD’10; SIGMOD’14; VLDB’16; VLDB’21]

2 3

4 5

1

A maximal connected subgraph 𝐻 such 
that deg 𝑣 ≥ 𝑘 for each 𝑣 ∈ 𝐻

3-core



Classical Metrics

𝒌-truss
[SIGMOD’14; VLDB’15; VLDB’17; ICDE’21]

A maximal connected subgraph 𝐻 such 
that every edge 𝑒 ∈ 𝐸(𝐻) belongs to at 

least 𝑘 − 2 triangles in 𝐻

2 3

4 5

1

6

3-truss



Classical Metrics

𝒌-clique
[SIGMOD’13; TKDE’17]

A connected subgraph 𝐻 such that 𝐻 is a 
complete graph of order 𝑘

2 3

4 5

1

6

4-clique



Classical Metrics

𝒌-edge-connected component
[SIGMOD’15; CIKM’16]

A connected subgraph 𝐻 such that 𝐻
remains connected if less than 𝑘 edges 

are removed

2 3

4 5

1

6

3-ECC



Classical Metrics

ACQ
[VLDB’16]

ATC
[VLDB’17]

Deterministic methods that apply 
on attributed graphs

2 3

4 5

1 Node 
attributes



Classical Metrics

𝒌-edge-connected component
[SIGMOD’15; CIKM’16]

𝒌-clique
[SIGMOD’13; TKDE’17]

𝒌-truss
[SIGMOD’14; VLDB’15; VLDB’17; ICDE’21]

𝒌-core
[KDD’10; SIGMOD’14; VLDB’16; VLDB’21]

ACQ
[VLDB’16]

ATC
[VLDB’17]

Lack of flexibility
Predefined patterns are rigid when 
applied to varying scenarios



Recent Learning Framework

Community

Accurate Definition
Metrics such as 𝑘-core

“Searching” the 
community

“Learning” the 
community model

Soft Information
𝑝 is in 𝑞’s community

Classical Method Learning Method



Recent Learning Framework
ICS-GNN  [VLDB’21]

• Yield high-quality communities with interactive labeling 
• No predefined pattern needed

QD/AQD-GNN  [VLDB’22]

COCLEP  [ICDE’23]

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive community search via graph neural network. PVLDB 2021.

• Model the attribute relations 
• Process structure and attribute simultaneously

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.

Li L, Luo S, Zhao Y, Shan C, Qin L, Wang Z. COCLEP: Contrastive Learning-based Semi-Supervised Community Search. ICDE 2023.

• Utilise graph contrastive learning 
• Reduce the amount of training labels



ICS-GNN

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive 
community search via graph neural network. PVLDB 2021.

Input query vertex 

Iterative 
Learning 
& Search



ICS-GNN

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive 
community search via graph neural network. PVLDB 2021.

Iterative 
Learning 
& Search

Candidate Subgraph 
Construction

• Partial edge enhancement strategy
• Locate useful vertices 



ICS-GNN

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive 
community search via graph neural network. PVLDB 2021.

GNN Training 
and Inference

• Output model that predicts the 
probabilities of nodes belonging to the 
community

Iterative 
Learning 
& Search



ICS-GNN

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive 
community search via graph neural network. PVLDB 2021.

• Output model that predicts the 
probabilities of nodes belonging to the 
community

Iterative 
Learning 
& Search

Community Discovery • Find community with maximum GNN 
prediction score



ICS-GNN

Gao J, Chen J, Li Z, Zhang J. ICS-GNN: Lightweight interactive 
community search via graph neural network. PVLDB 2021.

Update labelled vertices

Iterative 
Learning 
& Search

• Output model that predicts the 
probabilities of nodes belonging to the 
community



QD/AQD-GNN

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community 
search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.

Training Query

GNN Model



QD/AQD-GNN

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community 
search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.

Vertex Attribute

Graph Encoder

Query Vertex

Query Encoder

Graph Structure

Feature Fusion

Output Representation

Input

GNN

Output



QD/AQD-GNN

Jiang Y, Rong Y, Cheng H, at al. Query driven-graph neural networks for community 
search: From non-attributed, attributed, to interactive attributed. PVLDB 2022.

Vertex Attribute

Graph Encoder

Query Vertex

Query Encoder

Graph Structure

Feature Fusion

Output Representation

Attribute Encoder

Vertex-Attribute 
Bipartite graph

Input

GNN

Output



COCLEP

Li L, Luo S, Zhao Y, Shan C, Qin L, Wang Z. COCLEP: Contrastive 
Learning-based Semi-Supervised Community Search. ICDE 2023.

Query 
Encoder 

Graph 
Encoder 

Fuse

Augmentation

𝐺
𝑣!

𝑣"𝑣#

𝑣$
𝑣%𝑣&𝑣'

𝑣(

𝐺)*+ 𝑣# 𝑣"

𝑣!

𝑣$
𝑣(

𝑣!

𝑣# 𝑣"

𝑣!

𝑣# 𝑣"

𝑣$

𝑯: 𝑛×𝑑

Representation 

How to reduce the demand of training labels?

Query 
Encoder 

Graph 
Encoder 

Fuse
𝑯: 𝑛×𝑑

Representation 



CS: Summary
ICS-GNN
• Interactively explore and refine the community
• Trains GNN model for each query

QD/AQD-GNN

COCLEP

• QD-GNN: two-branch model that encodes information from both queries and graphs
• AQD-GNN: Extend by fusing attributes into the model

• Focus on reducing the label demands by using GCL



Outline

COMMUNITY DETECTION
Ningyi Liao 10 min



CD: COMMUNITY DETECTION

• Partition a graph into a set of 
communities

• A community is a subgraph 
that satisfy cohesiveness and 
connectivity constraints

• Communities can be either 
disjoint or overlapping

COMMUNITY DETECTION

Overlapping Communities

Disjoint Communities



CD: The Applications
• Graph: social network

• Vertex: user

• Edge: friend connection

• Task: How to detect communities 
containing similar users and close 
connections?

Work

Family
Neighbour



CD: The Applications

Fraud Detection
Graph: transaction network
Task: identify unusual patterns 
of potential fraud occurrences 

Biological systems
Graph: protein Interaction
Task: identify functional groups 
without prior knowledge

Friend Suggestion
Graph: social network
Task: suggest friendship in 
the same community



6

Supplemental Material: Enhanced detectability of community structure in multilayer networks
through layer aggregation

Dane Taylor,1,⇤ Saray Shai,1 Natalie Stanley1,2 Peter J. Mucha1
1
Carolina Center for Interdisciplinary Applied Mathematics,

Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599, USA
2
Curriculum in Bioinformatics and Computational Biology,

University of North Carolina, Chapel Hill, NC 27599, USA

Eigenspectra of Modularity Matrix B

Here, we provide further details about the limiting N ! 1

distribution of eigenvalues for modularity matrix B = A �

⇢L11T , where 1 is a vector of ones, A =
P

l A
(l) is the

summation of the layers’ adjacency matrices, and each A(l) is
drawn from a single stochastic block model with two equal-
sized communities. Our analysis is based on methodology
developed in [1,2], which we extend to layer-aggregated mul-
tiplex networks including those that are potentially dense. As
shown in Fig. 4, the spectrum consists of two parts—an iso-
lated eigenvalue �1 (whose corresponding eigenvector v en-
codes the spectral bi-partition) and bulk eigenvalues which
have an N ! 1 limiting distribution P (�). In the analy-
sis to follow, we will assume that the community structure is
detectable. We begin by defining random matrix

X = B� hBi, (10)

where hBiji indicates the mean value of Bij across the ran-
dom matrix ensemble. The decomposition of B facilitates the
analysis of spectra through the following relation,

0 = det
�
zI�B

�

= det
�
zI� (X+ hBi)

�

= det (zI�X) det
�
I� (zI�X)�1

hBi
�
, (11)

which assumes the invertibility of (zI � X). Equation (11)
highlights that the spectra of B can be studied in two parts: a
distribution P (z) of bulk eigenvalues that solve the first term,

0 = det (zI�X) , (12)

and an isolated eigenvalue that solves the second term,

0 = det
�
I� (zI�X)�1

hBi
�
. (13)

Before describing the solutions to Eq. (12) and Eq. (13), we
comment on the matrices X and hBi. Recall that each entry
Aij follows a binomial distribution [see Eq. (2) in the main
text], so that their mean and variance is

hAiji =

⇢
Lpin, ci = cj
Lpout, ci 6= cj .

hA2
iji � hAiji

2 =

⇢
Lpin(1� pin), ci = cj
Lpout(1� pout), ci 6= cj ,

(14)

where ci, cj 2 {1, 2} indicate the community labels of nodes

−40 −20 0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

eigenvalue, λ

ei
g
en

v
a
lu

e
d
en

si
ty
,
P
(λ

)

Empir ical e igenspectra of B

0 2000 4000
−0.04

−0.02

0

0.02

0.04

index, i

e
n
t
r
y,

v
i

Eigenvect or v

bu lk eigenvalues

is olat ed eigenvalue, λ1

b oundary, λ2

FIG. 4. (Color online) Empirical eigenspectra of the modularity ma-

trix B. We plot the distribution of eigenvalues of B = A� ⇢L11T ,
which consists of two parts: bulk eigenvalues that solve Eq. (12)
and an isolated eigenvalue that solves Eq. (13). The subplot depicts
the eigenvector v corresponding to the largest eigenvalue �1, which
encodes community structure and gives the spectral bi-partition. Re-
sults are shown for N = 5000 nodes, L = 4 layers, mean edge
probability ⇢ = 0.03, and probability difference � = 0.01 (see
main text).

i and j. It follows that {Xij} have mean and variance

hXiji = 0

hX2
iji =

⇢
Lpin(1� pin), ci = cj
Lpout(1� pout), ci 6= cj .

(15)

We next consider hBi. Using that Bij = Aij � ⇢L and ⇢ =
(pin + pout)/2 (i.e., pin,out � ⇢ = ±�/2), we find

hBiji =

⇢
L�/2, ci = cj
�L�/2, ci 6= cj .

(16)

Importantly, hBi is a rank-one matrix [2]

hBi = ✓1uu
T , (17)

where u = N�1/2[1, . . . , 1,�1, . . . ,�1]T and

✓1 =
NL�

2
. (18)

We point out that without loss of generality, we have assumed

Classical Methods

Spectral Clustering

Optimisation

J. Stat. Mech. ’08
Phys. A ’16

Graph Partition

Kernighan-Lin 1970
Barnes 1982

Hierarchical Clustering

PNAS’02
Phys. Rev. E ’04
Phys. A ’18

Ann. Stat. ’13
Comput. 
Neurosci. ’14



Classical Framework

Spectral Clustering

Optimisation

Graph Partition

Hierarchical Clustering

Input Output

CommunitiesGraph

Detection



GNN CD Framework

Generative

Optimisation

Classification

Clustering

Input Detection Output

Graph

CommunitiesMore 
Data

Flexible Embeddings
Effective Models

Su, X., et al. (2022). A Comprehensive Survey on Community Detection with Deep 
Learning. IEEE Transactions on Neural Networks and Learning Systems.



GNN CD Framework

Generative

Optimisation

Classification

Clustering

Detection Output

Communities

GNN

Attribute

Graph

Input

Su, X., et al. (2022). A Comprehensive Survey on Community Detection with Deep 
Learning. IEEE Transactions on Neural Networks and Learning Systems.



LGNN

Chen, Z., Li, X., & Bruna, J. (2019). Supervised Community Detection with Line Graph Neural 
Networks. 7th International Conference on Learning Representations. ICLR 2019. 

Detection: ClassificationGNN: Line GNNPublished as a conference paper at ICLR 2019

Figure 1. Overview of the architecture of LGNN (Section 4.2). Given a graph G, we construct its line graph
L(G) with the non-backtracking operator (Figure 2). In every layer, the states of all nodes in G and L(G) are
updated according to (2). The final states of nodes in G are used to predict node-wise labels, and the trainining is
performed end-to-end using standard backpropagation with a label permutation invariant loss (Section 4.3).

Having a family of such matrices, F = {I,D,A,A2, ..., AJ} with a certain J , we can define a
multiscale GNN layer that maps x(k) 2 R|V |⇥bk to x(k+1) 2 R|V |⇥bk+1 as follows. First, we
compute

z(k+1) = ⇢

"
X

Oi2F
Oix

(k)✓i

#
, z(k+1) =

X

Oi2F
Oix

(k)✓i (1)

where ✓j 2 Rbk⇥
bk+1

2 are trainable parameters and ⇢(·) is a point-wise nonlinear activation function,
chosen in this work to be the ReLU function, i.e. ⇢(z) = max(0, z) for z 2 R. Then we define
x(k+1) = [z(k+1), z(k+1)] 2 R|V |⇥bk+1 as the concatenation of z(k+1) and z(k+1). The layer thus
includes linear skip connections via z(k), both to ease with the optimization when using large number
of layers (similar to residual connections (He et al., 2016)) and to increase the expressive power of
the model by enabling it to perform power iterations. Since the spectral radius of the learned linear
operators in (1) can grow as the optimization progresses, the cascade of GNN layers can become
unstable to training. In order to mitigate this effect, we perform instance normalization (or spatial
batch normalization with one graph per batch) (Ioffe & Szegedy, 2015; Ulyanov et al., 2016) at each
layer. The initial node states x(0) are set to be the node attributes if they are present in the data, and
otherwise the degrees of the nodes, i.e., x(0)

i
= Dii.

Note that the model �(G, x(0)) = x(K) satisfies the permutation equivariance property required
for node classification: given a permutation ⇡ among the nodes in the graph, �(⇡ � G,⇧x(0)) =
⇧�(G, x(0)), where ⇧ is the |V |⇥ |V | permutation matrix associated with ⇡.

Analogy with power iterations In our setup, instance normalization not only prevents gradient
blowup, but also performs the orthogonalisation relative to the constant vector, which reinforces the
analogy with the spectral methods for community detection, some background of which is described
in Appendix B.1. In short, under certain conditions, the community structure of the graph is correlated
with both the eigenvector of A corresponding to its second largest eigenvalue and the eigenvector of
the Laplacian matrix, L = D �A, corresponding to its second smallest eigenvalue (the latter often
called the Fiedler vector). Thus, spectral methods for community detection performs power iterations
on these matrices to obtain the eigenvectors of interest and predicts the community structure based
on them. For example, to extract the Fiedler vector, after finding the eigenvector v corresponding to
the smallest eigenvalue of L, one can then perform projected power iterations on L̃ := kLkI � L by
iteratively computing y(n+1) = L̃x(n) and x(n+1) = y

(n+1)�v
T
vy

(n+1)

ky(n+1)�vT vy(n+1)k . As v is in fact a constant
vector, the normalization here is analogous to the instance normalization step in the GNN layer
defined above.

4

• Simultaneous on graph and line graph
• Incorporate non-backtracking operator
• Represent edge adjacency information

• Conventional GNN classification task
• Cross-entropy loss
• Require labelled data

Line graph L(G)

Graph G

Multi-class/
Disjoint

Multi-label/
Overlap

or

Node 
representation



CommDGI

Zhang, T., et al. (2020). CommDGI: Community Detection Oriented Deep Graph Infomax. Proceedings of 
the 29th ACM International Conference on Information & Knowledge Management, 1843–1852. 

Detection: Joint OptimisationGNN: Deep Graph Infomax

• Maximise graph mutual information
• Contrastive method of negative samples
• Unsupervised MI objective

• Differentiable K-means clustering
• Soft K-means on representation
• Optimise community MI and modularity

Contrastive

Graph MI Soft K-means

Comm MI

Modularity

Joint Optimisation



CD: Summary
• Learning-based methods such as GNNs improve the CD by more 

flexible model designs and data processing

• The GNN for CD framework usually includes a GNN representation
module and a detection module

LGNN CommDGI

Paradigm Supervised Unsupervised

Community Disjoint/Overlap Disjoint

GNN Line GNN Deep Graph Infomax

Detection Classification Joint Optimisation



Outline

MAXIMUM COMMON SUBGRAPH
Ningyi Liao 12 min



GRAPH ISOMORPHISM

GRAPH ISOMORPHISM (non-labeled):

Given two graphs G1=(V1, E1) and G2=(V2, E2), there exists a bijection 
f: V1 → V2 such that:

edge uv ∈ E1 ⇔ edge f(u)f(v) ∈ E2

A B

D C

Bijection:

f(1) = A
f(2) = B
f(3) = C
f(4) = D

✓ isomorphic

1

2

4 3
G1 G2



GRAPH ISOMORPHISM

GRAPH ISOMORPHISM (labeled):

Given two graphs G1=(V1, E1, L1) and G2=(V2, E2 , L2), there exists a 
bijection f: V1 → V2, such that:

1) Edge: uv ∈ E1 ⇔ edge f(u)f(v) ∈ E2
2) Label: L1(v) = L2(f(v))

A B

D C

✓ isomorphic

1

2

4 3
G1

A B

D C

✘ not isomorphic



MAX COMMON SUBGRAPH

MCS: MAX COMMON SUBGRAPH (labeled, node-induced):

Given two graphs G1=(V1, E1, L1) and G2=(V2, E2, L2), find the largest sets 
V1′⊆ V1 and V2′⊆ V2, there exists a bijection f: V1′ → V2′, such that: 

1) u, v ∈ V1′, edge uv ∈ E1 ⇔ edge f(u)f(v) ∈ E2

2) v ∈ V1′, vertex label L1(v) = L2(f(v))

1

2

4 3

G1

A B

D C

E

G

F

G2

Bijection:

f(1) = A
f(2) = B
f(3) = C
f(4) = D



MCS: The Applications
• Graph: molecule

• Vertex: atom

• Edge: chemical bond

• Task: Molecules that have similar 
partial structures are expected to 
have similar drug efficacy. How to 
find the maximum common partial 
structures in two molecules?

Largest

Smaller

Yasuharu Okamoto. 2020. Finding a Maximum Common Subgraph from Molecular Structural Formulas through 
the Maximum Clique Approach Combined with the Ising Model. ACS Omega 5 (22), 13064-13068.



MCS: The Applications

Facial Recognition
Vertex: landmark in image
Task: compare similarity of 
given image to DB

Software Analysis
Vertex: kernel object | Edge: call
Task: discover specific malware 
behaviours in software

Molecule Search 
Graph: molecule graph DB
Task: find molecules in DB 
similar to query graph supergraph (Bunke et al., 2003). The resulting common graph

is called the Weighted Common Behavioral Graph (WCBG) for

the family. This graph is directed, and has edge weights
derived from the KOBGs that are combined. Moreover, a Hot-
Path is a subgraph of the common behavioral graph which is
found in all of the KOBGs for this family.

Using the resulting WCBG, including the HotPath, any
variant of the malware family may be detected by a matching
process. A binary executable suspected of being malicious is
executed likewise in a restricted environment, and system call
traces are recorded during its execution. A KOBG for this
program is constructed from this information, in the same
way as for the training set. A matching process compares the

KOBG of the suspicious binary with the WCBG of a malware
family to decide if this binary is malicious or not. This
matching process makes use of an empirically derived
threshold to make the decision.

The next section describes the details of execution moni-
toring, construction of KOBGs, how they are clustered into the
WCBG, and the matching algorithm.

3. The proposed method

The new method has two steps for malware detection. In the
first step, a set of malware instances (executables) are pro-
cessed to derive kernel object behavioral graphs (one per
instance) that represent their behavior. In the second step, the
graphs for malware instances that are in the same family are
then clustered into a single graph (a Weighted Common

Behavioral Graph) that represents the behavior of all members
of that family. The single graph is reliably generated by a few
malware samples if the collected samples are correctly clas-
sified into one specific malware family. Finally, the clustered
single graph detects new instances of malware with very low
overhead by comparison to the weighted common behavioral
graphs for different malware families. Each processing step is
now described in order.

3.1. Kernel object behavioral graph generation

The graph that represents the behavior of a malware instance
is a kernel object behavioral graph. A kernel object is a memory

block in the kernel. This memory block is a data structure
whosemembersmaintain information about the object. In the

Windows operating system, several kernel objects are defined,
including processes, threads, files, events, sockets, etc.
(Microsoft Kernel object). Since the kernel object data struc-
tures are accessible only by the kernel, it is not possible for an
application to locate these data structures in memory and
directly alter their contents.

A kernel object behavioral graph is constructed from in-
formation that is collected from a running program. A mal-
ware program or suspectedmalware program is executed in a
virtualized environment. The virtual environment is instru-
mented to capture the arguments of each system call that is

executed. Based on the intercepted system call traces, the
method identifies relationships between kernel objects.

A kernel object behavioral graph (KOBG) is a weighted
directed graph described by g¼(V,E,l,m). V is a set of vertexes
(vertices, v), and each represents a type of kernel objects. The
attributes of a vertex indicate the specific name of the kernel
object. E4V " V is a set of edges e, and each edge indicates a
dependency between two kernel objects. The dependency is
presented by handle types and handle values. A dependency
consists of a handle type and a handle value for the object. The
object handle indicates an identifier to represent a system

resource inside a kernel,which is allocated by anapplication. l :

V/Nþ is a function assigning positive weight to the vertexes
(initially, lðvÞ ¼ 1 cv˛V). m : E/Nþ is a function assigning pos-
itive weights to the edges (initially, mðeÞ ¼ 1 ce˛E).

A kernel object is a data structure that represents a sys-
tem resource, such as a file or a thread. It cannot be directly
accessed by applications. Instead, an object handle must be
obtained before accessing or modifying the system resource.
Each handle indicates an entry in a table maintained inside
a kernel. These entries include the addresses of the re-
sources and the means to identify the resource type. When

kernel objects are accessed via system calls, most such calls
include the handle and the object attributes of kernel ob-
jects as arguments of the call. The object name is identified
by the ObjectAtrributes parameter in the intercepted system
call.

Each kernel object has a creator function and a destructor
function. For instance, NtCreateFile creates a new file or
directory, or opens an existing file, directory, device, or

.....

NtCreateDirectoryObject(OUT DirectoryHandle -> 1,

, IN ObjectAttributes -> A);

.....

NtCreateFile(OUT FileHandle -> 2, ... ,

IN ObjectAttributes -> B,...........);

.....

NtCreateFile(OUT FileHandle -> 3, ... ,

IN ObjectAttributes -> C,...........);

.....

NtCreateSection(OUT SectionHandle -> 4, ... ,

IN ObjectAttributes->D, ....,

IN FileHandle -> 2);

.....

(a) System Call Traces (b) KOBG

Process

Directory_A File_B

File_C

Section_D

Fig. 1 e A partial kernel object behavioral graph for the intercepted system call traces. (Note that the digits indicate handle
values and the alphabets mean kernel object names.)

c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 4 1 9e4 3 0 421

Vincenti et al. Molecular Networking for NPS Identification

FIGURE 1 | Synthetic cannabinoids network.

FIGURE 2 | Fentanyl network.

Fentanyl Network
For fentanyls, 4 out of 16 compounds of the mixture were
correctly identified by library matching, namely fentanyl
(identified as “Innovar” which is a trade name of a drug
containing fentanyl) remifentanyl, sufentanyl, and alfentanyl
while no hits were found for the remaining drugs. Among the
drugs identified by the library matching, only fentanyl (m/z
337.227) was included in a network (Figure 2). The original
network contained 25 nodes, however, as reported above for

synthetic cannabinoids, nodes with lower intensity and nodes
that were likely to belong to adducts and in-source fragments
were deleted; the cleaned network included 16 nodes.

Ten of the standards included in the mixture were found in
this network as reported in Table 2. These drugs correspond
to the yellow colored nodes, while nodes from group 2 are
colored in blue and group 3 in red. From a visual analysis it
can be noticed that nodes belonging to this network are from
the three groups, suggesting that seizures A (group 2) and B

Frontiers in Chemistry | www.frontiersin.org 5 November 2020 | Volume 8 | Article 572952



Conventional Solution: Branch and Bound
1

2

4 3

G1

A

B

D

C

E

G

F

G2

G1′ G2′Branch Bound

Connectivity Max degree

3 3

1 2 4

A B D E GF

3

C

3 3

3 4 5 3 3 2 2

G1

G2

degree

degree

Potential Max Size
>   Current Max Size

Candidate Vertices

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for 
Maximum Common Subgraph Problems. In 26th IJCAI. 712–719.



Conventional Solution: Branch and Bound

G2

G1′ G2′Candidate Vertices Branch Bound

Connectivity Max degree

3 3 3

3 4 3 3

G1

G2

degree

degree

Potential Max Size
>   Current Max Size

1 2 4

A B D E

1

2

4 3

G1

A

B

D

C

E

4  >  1

✓ Continue

3 C

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for 
Maximum Common Subgraph Problems. In 26th IJCAI. 712–719.



Conventional Solution: Branch and Bound

G2

G1′ G2′Candidate Vertices Branch Bound

Connectivity Max degree

3 3 3

3 4 3 3

G1

G2

degree

degree

Potential Max Size
>   Current Max Size

1 2 4

A B D E

1

2

4 3

G1

A

B

D

C

E

3 C

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for 
Maximum Common Subgraph Problems. In 26th IJCAI. 712–719.



Conventional Solution: Branch and Bound

G2

G1′ G2′Candidate Vertices Branch Bound

Connectivity Max degree

3 3

3 3 3

G1

G2

degree

degree

Potential Max Size
>   Current Max Size

1 4

A D E

1

2

4 3

G1

A

B

D

C

E

3 C2 B 4  >  2

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for 
Maximum Common Subgraph Problems. In 26th IJCAI. 712–719.

✓ Continue



Conventional Solution: Branch and Bound

G2

G1′ G2′Candidate Vertices Branch Bound

Connectivity Max degree

3 3

3 3 3

G1

G2

degree

degree

Potential Max Size
>   Current Max Size

1 4

A D E

1

2

4 3

G1

A

B

D

C

E

3 C2 B

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for 
Maximum Common Subgraph Problems. In 26th IJCAI. 712–719.



Conventional Solution: Branch and Bound

G2

G1′ G2′Candidate Vertices Branch Bound

Connectivity Max degree

3

3 3

G1

G2

degree

degree

Potential Max Size
>   Current Max Size

4

D E

1

2

4 3

G1

A

B

D

C

E

3 C2 B

1 A

4  >  3

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for 
Maximum Common Subgraph Problems. In 26th IJCAI. 712–719.

✓ Continue



Conventional Solution: Branch and Bound

G2

G1′ G2′Candidate Vertices Branch Bound

Connectivity Max degree

3

3 3

G1

G2

degree

degree

Potential Max Size
>   Current Max Size

4

D E

1

2

4 3

G1

A

B

D

C

E

3 C2 B

1 A

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for 
Maximum Common Subgraph Problems. In 26th IJCAI. 712–719.



Conventional Solution: Branch and Bound

G2

G1′ G2′Candidate Vertices Branch Bound

Connectivity Max degree

G1

G2

degree

degree

Potential Max Size
>   Current Max Size

1

2

4 3

G1

A

B

D

C

1

2
4 3

A

B

D

C

✓ current best

Current Max Size = 4

C. McCreesh, P. Prosser, and J. Trimble. 2017. A Partitioning Algorithm for 
Maximum Common Subgraph Problems. In 26th IJCAI. 712–719.



MCS Search Framework
McSplit Branch and Bound:

Current 
G1′ & G2′

Reinforcement Learning:

Algorithm

G1 & G2

Branching: 
Select vertex pair 

of max degree

State

Agent

Environment

ActionReward

heuristic rule



McSplit+RL
RL alongside BnB Search:

State:
Current Subgraph

McSplit Alg

Env: G1 & G2

Action:
Branching

Reward:
Best Branching

Agent

Y. Liu, C. M. Li, H. Jiang, and K. He. 2020. A Learning Based Branch and Bound for Maximum Common Subgraph 
Related Problems. Proceedings of the AAAI Conference on Artificial Intelligence 34, 03 (2020), 2392–2399.

Reward Design

Reach search tree leaf as early as possible⇔

Minimise the size of the search space

Action Design

Vertex pair with largest degree

⇒

Vertex pair with best RL reward

McSplit

McSplit+RL



GLSearch
End-to-end RL BnB Search:

Env: G1 & G2

Action: 
BnB Search

Agent

Y. Bai, D. Xu, Y. Sun, and W. Wang. 2020. GLSearch: Maximum Common 
Subgraph Detection via Learning to Search. In ICML. 588–598.

GNN

Reward Design Action Design

Reward of RL: find the max subgraph

Goal of GNN: learn to achieve best reward

GNN learning the current state

Decide search order & select vertex pair

State:
Current Subgraph

Reward:
Max Subgraph



MCS: Summary
• The MCS problem is NP-hard. Conventional algorithms are based 

on Branch and Bound search under heuristic rules

• The search can be powered by Reinforcement Learning: design 
reward (learning goal) and action (one step of search)

• RL can improve the search by reaching solutions faster

Model Reward Action

McSplit+RL Optimise BnB search Select vertex of best reward

GLSearch Find max subgraph Perform BnB search



Outline

SUBGRAPH ISOMORPHISMCOUNTING
Reynold Cheng 12 min



SUBGRAPH ISOMORPHISM COUNTING

SIC: SUBGRAPH ISOMORPHISM COUNTING (labeled, heterogeneous):
Given a query graph Gq=(Vq, Eq, Lq, Cq) and a corpus graph Gc=(Vc, Ec, 

Lc, Cc), return the number of subgraphs in Gc such that those 
subgraphs are isomorphic to Gq

1

2

4 3

Gq

A B

D C

E

G

F

Gc



SIC: The Applications
• Corpus Graph: road network

• Query Graph: connectivity patterns

• Vertex: intersections

• Edge: road segments

• Task: What is the frequency of 
certain connectivity patterns in a 
road network?

G Shen, et al. 2022. Motif discovery based traffic pattern mining in 
attributed road networks. Knowledge-Based Systems 250. 

G. Shen, D. Zhu, J. Chen et al. Knowledge-Based Systems 250 (2022) 109035

Fig. 3. Triangular motifs.

Fig. 4. Higher-order connectivity patterns in a road network.

Fig. 5. Illustration for motif-based search and IAMS. All the motifs are at the
leaf level with IAMS labeled beneath.

sequence to form n�1 sub-queues {v1, v2}, {v1, v3}, · · · , {v1, vn}.
If the two nodes of the sub-queue are not adjacent, the sub-queue
is deleted. Third, because the number of nodes in the motif-based
road networks is three, the tree structure enters the third layer
to complete the motif-based search, i.e., n�1 subqueues {v1, v2},
{v1, v3}, · · · , {v1, vn} and the remaining nodes corresponding to
Qv are all added in sequence to form n2�3n+2

2 new sub-queues
{v1, v2, v3}, {v1, v2, v4}, · · · , {v1, v3, v4}, · · · , {v1, vn�1, vn}. If the
third node of the sub-queue is not adjacent to the previous two
nodes, the sub-queue is deleted. In the same way, the second
node v2 is the starting search node. When the previous node v1
is removed, the aforementioned search method is also adopted to
determine the sub-queue with three nodes. It continues until the
last node vn, and then the motif-based search ends.

Fig. 5 is an example of motif-based search: (a) is a directed
graph of a road network with four nodes, and (b) is the motif
search based on (a). According to the breadth-first search on
graphs, node {1} is used as the starting search node, three sub-
queues {1, 2, 3}, {1, 2, 4}, {1, 3, 4} are obtained, and the number
of motifs is determined.

3.2.2. Motif-based type determination
According to the breadth-first search on graphs in the first

step, the number of motifs in road networks can be determined;
however, the specific types of motifs cannot be distinguished.
Thus, the iterative adjacency matrix string (IAMS) representation
method [28] was adopted to define motif-based identification

and determine motif types. IAMS is defined as follows: if there
is a motif with three nodes, 0 indicates that the current node
has no adjacent relationship with the previous nodes, 1 indicates
that the previous nodes have a directed relationship with the
current node, �1 indicates that the current node has a directed
relationship with the previous nodes, and 2 represents the bidi-
rectional relationship between the current node and the previous
nodes. The IAMS corresponding to the three motifs in Fig. 5(b) is
represented as ‘‘2,1,0’’, ‘‘2,1,1’’, and ‘‘1,1, -1’’.

3.2.3. Motif-based weighted adjacency matrix representation
According to the previous two steps, all road network motifs

are classified according to their types, and the IAMS values of
motifs are normalized corresponding to each pair of adjacent
nodes vi and vj.

wij,k = count(iamsk)
|set(motif )| , (1)

where wij,k is the weighted value of the adjacent nodes vi and vj
belonging to the kth motif, count(iamsk) is the number of IAMS
values iamsk in all motifs, and set(motif ) is the set of all motifs.

The motif-based weighted adjacency matrix is expressed as
WM 2 RN⇥N :

(WM )ij =
nX

k=1

wij,k, (2)

where (WM )ij is the motif-based weighted value of the adjacent
nodes vi and vj, and n is the number of set(motif ).

3.3. Motif-based attributed road network pattern clustering

Because the attribute consistency of nodes corresponds to the
graph topological structures in the feature similarity matrix [22],
a node feature similarity matrix S is constructed to alleviate
the heterogeneity between structure and attribute information of
road networks.

Given the attributed road network G, NMF approximates the
motif-based weighted adjacency matrix WM and node feature
similarity matrix S by the product of three nonnegative low-rank
matrices B, F 1, and F 2 such that

WM ⇡ BF 1, S ⇡ BF 2,B � 0, F 1 � 0, F 2 � 0 (3)

Eq. (3) can be solved by minimizing the l2 norm of the approx-
imation, that is,

min kWM � BF 1k2,B � 0, F 1 � 0 (4)

min kS � BF 2k2,B � 0, F 2 � 0, (5)

where B is the common basis matrix, F 1 and F 2 are feature
matrices for WM and S , respectively, and k.k2 is the l2 norm.

According to Eqs. (3)–(5), the loss function based on the joint
decomposition WM and S is expressed as follows:

O(B, F 1, F 2) = min
1
2
(kWM � BF 1k2

F + ↵kS � BF 2k2
F ), (6)

where O(B, F 1, F 2) is the loss function, k.kF is the Frobenius norm
of matrices, and ↵ is the parameter for S and F 2.

By expressing the aforementioned loss function as a matrix
trace function, the objective function represented by the trace
function can be obtained as follows:
L =kBF 1k2

F + kBF 2k2
F � 2Tr(BTWMFT

1
)

� 2↵Tr(BT SFT
2
) + kWMk2 + ↵kSk2,

(7)

where Tr(.) is the trace function, and BT , FT
1
and FT

2
are the trans-

pose matrices of the low-rank matrices B, F 1 and F 2, respectively.

5

G. Shen, D. Zhu, J. Chen et al. Knowledge-Based Systems 250 (2022) 109035

Fig. 3. Triangular motifs.

Fig. 4. Higher-order connectivity patterns in a road network.

Fig. 5. Illustration for motif-based search and IAMS. All the motifs are at the
leaf level with IAMS labeled beneath.

sequence to form n�1 sub-queues {v1, v2}, {v1, v3}, · · · , {v1, vn}.
If the two nodes of the sub-queue are not adjacent, the sub-queue
is deleted. Third, because the number of nodes in the motif-based
road networks is three, the tree structure enters the third layer
to complete the motif-based search, i.e., n�1 subqueues {v1, v2},
{v1, v3}, · · · , {v1, vn} and the remaining nodes corresponding to
Qv are all added in sequence to form n2�3n+2

2 new sub-queues
{v1, v2, v3}, {v1, v2, v4}, · · · , {v1, v3, v4}, · · · , {v1, vn�1, vn}. If the
third node of the sub-queue is not adjacent to the previous two
nodes, the sub-queue is deleted. In the same way, the second
node v2 is the starting search node. When the previous node v1
is removed, the aforementioned search method is also adopted to
determine the sub-queue with three nodes. It continues until the
last node vn, and then the motif-based search ends.

Fig. 5 is an example of motif-based search: (a) is a directed
graph of a road network with four nodes, and (b) is the motif
search based on (a). According to the breadth-first search on
graphs, node {1} is used as the starting search node, three sub-
queues {1, 2, 3}, {1, 2, 4}, {1, 3, 4} are obtained, and the number
of motifs is determined.

3.2.2. Motif-based type determination
According to the breadth-first search on graphs in the first

step, the number of motifs in road networks can be determined;
however, the specific types of motifs cannot be distinguished.
Thus, the iterative adjacency matrix string (IAMS) representation
method [28] was adopted to define motif-based identification

and determine motif types. IAMS is defined as follows: if there
is a motif with three nodes, 0 indicates that the current node
has no adjacent relationship with the previous nodes, 1 indicates
that the previous nodes have a directed relationship with the
current node, �1 indicates that the current node has a directed
relationship with the previous nodes, and 2 represents the bidi-
rectional relationship between the current node and the previous
nodes. The IAMS corresponding to the three motifs in Fig. 5(b) is
represented as ‘‘2,1,0’’, ‘‘2,1,1’’, and ‘‘1,1, -1’’.

3.2.3. Motif-based weighted adjacency matrix representation
According to the previous two steps, all road network motifs

are classified according to their types, and the IAMS values of
motifs are normalized corresponding to each pair of adjacent
nodes vi and vj.

wij,k = count(iamsk)
|set(motif )| , (1)

where wij,k is the weighted value of the adjacent nodes vi and vj
belonging to the kth motif, count(iamsk) is the number of IAMS
values iamsk in all motifs, and set(motif ) is the set of all motifs.

The motif-based weighted adjacency matrix is expressed as
WM 2 RN⇥N :

(WM )ij =
nX

k=1

wij,k, (2)

where (WM )ij is the motif-based weighted value of the adjacent
nodes vi and vj, and n is the number of set(motif ).

3.3. Motif-based attributed road network pattern clustering

Because the attribute consistency of nodes corresponds to the
graph topological structures in the feature similarity matrix [22],
a node feature similarity matrix S is constructed to alleviate
the heterogeneity between structure and attribute information of
road networks.

Given the attributed road network G, NMF approximates the
motif-based weighted adjacency matrix WM and node feature
similarity matrix S by the product of three nonnegative low-rank
matrices B, F 1, and F 2 such that

WM ⇡ BF 1, S ⇡ BF 2,B � 0, F 1 � 0, F 2 � 0 (3)

Eq. (3) can be solved by minimizing the l2 norm of the approx-
imation, that is,

min kWM � BF 1k2,B � 0, F 1 � 0 (4)

min kS � BF 2k2,B � 0, F 2 � 0, (5)

where B is the common basis matrix, F 1 and F 2 are feature
matrices for WM and S , respectively, and k.k2 is the l2 norm.

According to Eqs. (3)–(5), the loss function based on the joint
decomposition WM and S is expressed as follows:

O(B, F 1, F 2) = min
1
2
(kWM � BF 1k2

F + ↵kS � BF 2k2
F ), (6)

where O(B, F 1, F 2) is the loss function, k.kF is the Frobenius norm
of matrices, and ↵ is the parameter for S and F 2.

By expressing the aforementioned loss function as a matrix
trace function, the objective function represented by the trace
function can be obtained as follows:
L =kBF 1k2

F + kBF 2k2
F � 2Tr(BTWMFT

1
)

� 2↵Tr(BT SFT
2
) + kWMk2 + ↵kSk2,

(7)

where Tr(.) is the trace function, and BT , FT
1
and FT

2
are the trans-

pose matrices of the low-rank matrices B, F 1 and F 2, respectively.

5

G. Shen, D. Zhu, J. Chen et al. Knowledge-Based Systems 250 (2022) 109035

Fig. 3. Triangular motifs.

Fig. 4. Higher-order connectivity patterns in a road network.

Fig. 5. Illustration for motif-based search and IAMS. All the motifs are at the
leaf level with IAMS labeled beneath.

sequence to form n�1 sub-queues {v1, v2}, {v1, v3}, · · · , {v1, vn}.
If the two nodes of the sub-queue are not adjacent, the sub-queue
is deleted. Third, because the number of nodes in the motif-based
road networks is three, the tree structure enters the third layer
to complete the motif-based search, i.e., n�1 subqueues {v1, v2},
{v1, v3}, · · · , {v1, vn} and the remaining nodes corresponding to
Qv are all added in sequence to form n2�3n+2

2 new sub-queues
{v1, v2, v3}, {v1, v2, v4}, · · · , {v1, v3, v4}, · · · , {v1, vn�1, vn}. If the
third node of the sub-queue is not adjacent to the previous two
nodes, the sub-queue is deleted. In the same way, the second
node v2 is the starting search node. When the previous node v1
is removed, the aforementioned search method is also adopted to
determine the sub-queue with three nodes. It continues until the
last node vn, and then the motif-based search ends.

Fig. 5 is an example of motif-based search: (a) is a directed
graph of a road network with four nodes, and (b) is the motif
search based on (a). According to the breadth-first search on
graphs, node {1} is used as the starting search node, three sub-
queues {1, 2, 3}, {1, 2, 4}, {1, 3, 4} are obtained, and the number
of motifs is determined.

3.2.2. Motif-based type determination
According to the breadth-first search on graphs in the first

step, the number of motifs in road networks can be determined;
however, the specific types of motifs cannot be distinguished.
Thus, the iterative adjacency matrix string (IAMS) representation
method [28] was adopted to define motif-based identification

and determine motif types. IAMS is defined as follows: if there
is a motif with three nodes, 0 indicates that the current node
has no adjacent relationship with the previous nodes, 1 indicates
that the previous nodes have a directed relationship with the
current node, �1 indicates that the current node has a directed
relationship with the previous nodes, and 2 represents the bidi-
rectional relationship between the current node and the previous
nodes. The IAMS corresponding to the three motifs in Fig. 5(b) is
represented as ‘‘2,1,0’’, ‘‘2,1,1’’, and ‘‘1,1, -1’’.

3.2.3. Motif-based weighted adjacency matrix representation
According to the previous two steps, all road network motifs

are classified according to their types, and the IAMS values of
motifs are normalized corresponding to each pair of adjacent
nodes vi and vj.

wij,k = count(iamsk)
|set(motif )| , (1)

where wij,k is the weighted value of the adjacent nodes vi and vj
belonging to the kth motif, count(iamsk) is the number of IAMS
values iamsk in all motifs, and set(motif ) is the set of all motifs.

The motif-based weighted adjacency matrix is expressed as
WM 2 RN⇥N :

(WM )ij =
nX

k=1

wij,k, (2)

where (WM )ij is the motif-based weighted value of the adjacent
nodes vi and vj, and n is the number of set(motif ).

3.3. Motif-based attributed road network pattern clustering

Because the attribute consistency of nodes corresponds to the
graph topological structures in the feature similarity matrix [22],
a node feature similarity matrix S is constructed to alleviate
the heterogeneity between structure and attribute information of
road networks.

Given the attributed road network G, NMF approximates the
motif-based weighted adjacency matrix WM and node feature
similarity matrix S by the product of three nonnegative low-rank
matrices B, F 1, and F 2 such that

WM ⇡ BF 1, S ⇡ BF 2,B � 0, F 1 � 0, F 2 � 0 (3)

Eq. (3) can be solved by minimizing the l2 norm of the approx-
imation, that is,

min kWM � BF 1k2,B � 0, F 1 � 0 (4)

min kS � BF 2k2,B � 0, F 2 � 0, (5)

where B is the common basis matrix, F 1 and F 2 are feature
matrices for WM and S , respectively, and k.k2 is the l2 norm.

According to Eqs. (3)–(5), the loss function based on the joint
decomposition WM and S is expressed as follows:

O(B, F 1, F 2) = min
1
2
(kWM � BF 1k2

F + ↵kS � BF 2k2
F ), (6)

where O(B, F 1, F 2) is the loss function, k.kF is the Frobenius norm
of matrices, and ↵ is the parameter for S and F 2.

By expressing the aforementioned loss function as a matrix
trace function, the objective function represented by the trace
function can be obtained as follows:
L =kBF 1k2

F + kBF 2k2
F � 2Tr(BTWMFT

1
)

� 2↵Tr(BT SFT
2
) + kWMk2 + ↵kSk2,

(7)

where Tr(.) is the trace function, and BT , FT
1
and FT

2
are the trans-

pose matrices of the low-rank matrices B, F 1 and F 2, respectively.

5

G. Shen, D. Zhu, J. Chen et al. Knowledge-Based Systems 250 (2022) 109035

Fig. 3. Triangular motifs.

Fig. 4. Higher-order connectivity patterns in a road network.

Fig. 5. Illustration for motif-based search and IAMS. All the motifs are at the
leaf level with IAMS labeled beneath.

sequence to form n�1 sub-queues {v1, v2}, {v1, v3}, · · · , {v1, vn}.
If the two nodes of the sub-queue are not adjacent, the sub-queue
is deleted. Third, because the number of nodes in the motif-based
road networks is three, the tree structure enters the third layer
to complete the motif-based search, i.e., n�1 subqueues {v1, v2},
{v1, v3}, · · · , {v1, vn} and the remaining nodes corresponding to
Qv are all added in sequence to form n2�3n+2

2 new sub-queues
{v1, v2, v3}, {v1, v2, v4}, · · · , {v1, v3, v4}, · · · , {v1, vn�1, vn}. If the
third node of the sub-queue is not adjacent to the previous two
nodes, the sub-queue is deleted. In the same way, the second
node v2 is the starting search node. When the previous node v1
is removed, the aforementioned search method is also adopted to
determine the sub-queue with three nodes. It continues until the
last node vn, and then the motif-based search ends.

Fig. 5 is an example of motif-based search: (a) is a directed
graph of a road network with four nodes, and (b) is the motif
search based on (a). According to the breadth-first search on
graphs, node {1} is used as the starting search node, three sub-
queues {1, 2, 3}, {1, 2, 4}, {1, 3, 4} are obtained, and the number
of motifs is determined.

3.2.2. Motif-based type determination
According to the breadth-first search on graphs in the first

step, the number of motifs in road networks can be determined;
however, the specific types of motifs cannot be distinguished.
Thus, the iterative adjacency matrix string (IAMS) representation
method [28] was adopted to define motif-based identification

and determine motif types. IAMS is defined as follows: if there
is a motif with three nodes, 0 indicates that the current node
has no adjacent relationship with the previous nodes, 1 indicates
that the previous nodes have a directed relationship with the
current node, �1 indicates that the current node has a directed
relationship with the previous nodes, and 2 represents the bidi-
rectional relationship between the current node and the previous
nodes. The IAMS corresponding to the three motifs in Fig. 5(b) is
represented as ‘‘2,1,0’’, ‘‘2,1,1’’, and ‘‘1,1, -1’’.

3.2.3. Motif-based weighted adjacency matrix representation
According to the previous two steps, all road network motifs

are classified according to their types, and the IAMS values of
motifs are normalized corresponding to each pair of adjacent
nodes vi and vj.

wij,k = count(iamsk)
|set(motif )| , (1)

where wij,k is the weighted value of the adjacent nodes vi and vj
belonging to the kth motif, count(iamsk) is the number of IAMS
values iamsk in all motifs, and set(motif ) is the set of all motifs.

The motif-based weighted adjacency matrix is expressed as
WM 2 RN⇥N :

(WM )ij =
nX

k=1

wij,k, (2)

where (WM )ij is the motif-based weighted value of the adjacent
nodes vi and vj, and n is the number of set(motif ).

3.3. Motif-based attributed road network pattern clustering

Because the attribute consistency of nodes corresponds to the
graph topological structures in the feature similarity matrix [22],
a node feature similarity matrix S is constructed to alleviate
the heterogeneity between structure and attribute information of
road networks.

Given the attributed road network G, NMF approximates the
motif-based weighted adjacency matrix WM and node feature
similarity matrix S by the product of three nonnegative low-rank
matrices B, F 1, and F 2 such that

WM ⇡ BF 1, S ⇡ BF 2,B � 0, F 1 � 0, F 2 � 0 (3)

Eq. (3) can be solved by minimizing the l2 norm of the approx-
imation, that is,

min kWM � BF 1k2,B � 0, F 1 � 0 (4)

min kS � BF 2k2,B � 0, F 2 � 0, (5)

where B is the common basis matrix, F 1 and F 2 are feature
matrices for WM and S , respectively, and k.k2 is the l2 norm.

According to Eqs. (3)–(5), the loss function based on the joint
decomposition WM and S is expressed as follows:

O(B, F 1, F 2) = min
1
2
(kWM � BF 1k2

F + ↵kS � BF 2k2
F ), (6)

where O(B, F 1, F 2) is the loss function, k.kF is the Frobenius norm
of matrices, and ↵ is the parameter for S and F 2.

By expressing the aforementioned loss function as a matrix
trace function, the objective function represented by the trace
function can be obtained as follows:
L =kBF 1k2

F + kBF 2k2
F � 2Tr(BTWMFT

1
)

� 2↵Tr(BT SFT
2
) + kWMk2 + ↵kSk2,

(7)

where Tr(.) is the trace function, and BT , FT
1
and FT

2
are the trans-

pose matrices of the low-rank matrices B, F 1 and F 2, respectively.

5

Queries

Corpus



SIC: The Applications

Pattern Discovery
Graph: inter-firm network
Task: identify and count certain 
connection patterns

DBMS Bug Detection
Graph: DBMS schema tables
Task: find redundant queries in 
the schema graph

Protein Structure
Graph: protein interaction
Task: count frequency of certain 
interaction patterns in DB



SIC: The Challenge
• Exact SIC problem is NP-hard, resulting in exponential complexity

<latexit sha1_base64="IJ+SE2OFc0N5Ve7NUcbo4ClLtc4=">AAACG3icbVBNS8NAEN34bf2qevSytQjtwZKIqMeiF28qWFtoathsNu3iZpPuToQS8j+8+Fe8eFDEk+DBf+O29qCtD4Z5vDfD7jw/EVyDbX9ZM7Nz8wuLS8uFldW19Y3i5taNjlNFWYPGIlYtn2gmuGQN4CBYK1GMRL5gTf/ubOg375nSPJbXMEhYJyJdyUNOCRjJKx5cuIKFUHFDRWgmPVrKs4pp+9LrV0u5S4MYcHBrnH7uKt7tQdUrlu2aPQKeJs6YlNEYl17xww1imkZMAhVE67ZjJ9DJiAJOBcsLbqpZQugd6bK2oZJETHey0W053jNKgMNYmZKAR+rvjYxEWg8i30xGBHp60huK/3ntFMKTTsZlkgKT9OehMBUYYjwMCgdcMQpiYAihipu/YtojJiUwcRZMCM7kydPk5qDmHNWcq8Ny/XQcxxLaQbuoghx0jOroHF2iBqLoAT2hF/RqPVrP1pv1/jM6Y413ttEfWJ/fnMGhKg==</latexit>

O

✓
nc!

(nc � nq)!
· dnq

◆
<latexit sha1_base64="Mxloxp7L0N/zxaKhV0QYUhJd6II=">AAACC3icbZC7SgNBFIZn4y3GW9TSZkgQYhN2g6hl0MbOCOYC2WSZncwmQ2Zn15mzQljS2/gqNhaK2PoCdr6Nk0uhiT8MfPznHM6c348F12Db31ZmZXVtfSO7mdva3tndy+8fNHSUKMrqNBKRavlEM8ElqwMHwVqxYiT0BWv6w6tJvfnAlOaRvINRzDoh6UsecErAWF6+cOMKFkBJevfdVHp07NJeBNhQt+Iq3h/AiZcv2mV7KrwMzhyKaK6al/9yexFNQiaBCqJ127Fj6KREAaeCjXNuollM6JD0WdugJCHTnXR6yxgfG6eHg0iZJwFP3d8TKQm1HoW+6QwJDPRibWL+V2snEFx0Ui7jBJiks0VBIjBEeBIM7nHFKIiRAUIVN3/FdEAUoWDiy5kQnMWTl6FRKTtnZef2tFi9nMeRRUeogErIQeeoiq5RDdURRY/oGb2iN+vJerHerY9Za8aazxyiP7I+fwCtA5rQ</latexit>

O
�
n
nc
q · n2

c

�

Ribeiro, P., Paredes, P., Silva, M. E. P., Aparicio, D., & Silva, F. (2022). A Survey on Subgraph Counting: Concepts, 
Algorithms, and Applications to Network Motifs and Graphlets. ACM Computing Surveys, 54(2), 1–36. 

Brute force 
search

Ullmann 
(1976)

VF2
(2007)

<latexit sha1_base64="5qMX5ZjDt8zCVFumdlVnU1gadVk=">AAAB/XicbVDLSgMxFM3UV62v8bFzEy1CuykzRdRl0Y07K9gHtOOQSTNtaJIZkoxQh+KvuHGhiFv/w51/YzrtQlsPXDg5515y7wliRpV2nG8rt7S8srqWXy9sbG5t79i7e00VJRKTBo5YJNsBUoRRQRqaakbasSSIB4y0guHVxG89EKloJO70KCYeR31BQ4qRNpJvH9yUhI/vq+Wuohxmj6OybxedipMBLhJ3Ropghrpvf3V7EU44ERozpFTHdWLtpUhqihkZF7qJIjHCQ9QnHUMF4kR5abb9GJ4YpQfDSJoSGmbq74kUcaVGPDCdHOmBmvcm4n9eJ9HhhZdSESeaCDz9KEwY1BGcRAF7VBKs2cgQhCU1u0I8QBJhbQIrmBDc+ZMXSbNacc8q7u1psXY5iyMPDsExKAEXnIMauAZ10AAYPIJn8ArerCfrxXq3PqatOWs2sw/+wPr8Ad8Kk48=</latexit>

O(n2
c) ⇠ O(nc!)

Avg Degree
Query Nodes Size

Corpus Nodes Size



Conventional Solution: Tree Search

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (Sub)Graph 
Isomorphism Algorithm for Matching Large Graphs. PAMI 26, 10 (2004), 1367–1372.

State 2

1

2

4 3

Gq

A

B

D

C

E

G

F

Gc

Gq Gc

2 3

Search Tree

B C

State 3

State 4

2 3

1

1

2

4 3

…

✘ inconsistent!

s2

s3

s4

…

B C

E



Conventional Solution: Tree Search

State 2

Gq Gc

2 3

Search Tree

B C

State 5

State 6

1

2

4 3

…

s2

s3

s4

…

s5

s6

A

B

D

C

✓ isomorphic

2 3

1

B C

E

1

2

4 3

Gq

A

B

D

C

E

G

F

Gc

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (Sub)Graph 
Isomorphism Algorithm for Matching Large Graphs. PAMI 26, 10 (2004), 1367–1372.



Question-Answering Framework
The SIC Problem:

Input

Query Graph Corpus Graph

Output C = 1

Answer of query

The Question-Answering Problem:

Input

Query Data

Output C = 1

Answer of query



Question-Answering Framework
SIC Problem under QA Framework:

Input

Query Graph

Output

C = 1
Answer

Query Representation

Data Representation

Representation

Representation 
Model Regression 

Model

Corpus Graph



DIAMNet

Query Graph Query Representation

Data Representation

What are effective representation and regression models? GIN + DIAM

Corpus Graph

C = 1

Answer

X. Liu, H. Pan, M. He, Y.u Song, X. Jiang, and L. Shang. 2020. 
Neural Subgraph Isomorphism Counting. In SIGKDD. 1959–1969.

<latexit sha1_base64="CWo5KYTI0hilUEQqZQ6bfSt4B7c=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EitAglEVGPRS/erNAvaELYbDft0s0m7k6EUurFv+LFgyJe/Rfe/Ddu2xy09cHA470ZZuYFCWcKbPvbyC0tr6yu5dcLG5tb2zvm7l5TxakktEFiHst2gBXlTNAGMOC0nUiKo4DTVjC4nvitByoVi0Udhgn1ItwTLGQEg5Z88+DW5TSEUr0kfHIi/PuyK1mvD2XfLNoVewprkTgZKaIMNd/8crsxSSMqgHCsVMexE/BGWAIjnI4LbqpogskA92hHU4EjqrzR9IOxdayVrhXGUpcAa6r+nhjhSKlhFOjOCENfzXsT8T+vk0J46Y2YSFKggswWhSm3ILYmcVhdJikBPtQEE8n0rRbpY4kJ6NAKOgRn/uVF0jytOOcV5+6sWL3K4sijQ3SESshBF6iKblANNRBBj+gZvaI348l4Md6Nj1lrzshm9tEfGJ8/DmaWAA==</latexit>

O (T (nc + nq))
Linear Complexity:

GIN

GIN

DIAM

Input Regression ModelRepresentation Models

Training Iteration



ALSS

Query Graph

How to apply RDBMS techniques? Sketch Learning + Active Learning

Corpus Graph

C = 1

Answer

Substructures

Substructure Sketch

GIN

Label Embedding
ProNE

Self-Attn

Active Learning

K. Zhao, J. X. Yu, H. Zhang, Q. Li, and Y. Rong. 2021. A Learned 
Sketch for Subgraph Counting. In SIGMOD. 2142–2155.

Input Regression ModelRepresentation Models



NeurSC

Input

Query Graph

Regression ModelRepresentation Models

How to apply learning-based techniques? Inter-Graph + Adversarial Training

Corpus Graph

Answer

Subgraph

Query Representation

GIN
Subgraph Representation

WEst

Adversarial Training

Inter-Graph Mapping

GIN

Inter-Graph RepresentationGAT

H. Wang, R. Hu, Y. Zhang, L. Qin, W. Wang, and W. Zhang. 2022. Neural 
Subgraph Counting with Wasserstein Estimator. In SIGMOD. 160–175.

C = 1



SIC: Summary
• The SIC problem is NP-hard. Conventional enumeration-based 

algorithm is limited by the graph size

• The Question-Answering Framework enables ML algorithms: 
representation (graph to embedding) & regression (estimate count)

• ML approaches output favourable estimation with linear complexity

Model Representation Regression

DIAMNet GIN Attention

ALSS Sketch learning Active learning 

NeurSC Intra- & inter-graph Adversarial training 



Outline

Conclusion & Future Directions Reynold Cheng, 10 min



Summary: ML for Subgraph

⧇● ◑ ○Semi-supervisedSupervised Unsupervised Reinforcement ScalabilityEfficiencyEffectiveness



Summary: ML for Subgraph
Subgraph Problem Paradigm Algorithm Advance Method

MAX COMMON
SUBGRAPH

Search + RL McSplit+RL [AAAI, 2020]
GNN, Search + RL GLSearch [ICML, 2020]

GNN NeuralMCS [preprint, 2019]

SUBGRAPH ISOMORPHISM
COUNTING

GNN DIAMNet [SIGKDD, 2020]
GNN + Active Learning ALSS [SIGMOD, 2021]

GNN + Adversarial Learning NeurSC [SIGMOD, 2022]
GNN LRP [NIPS, 2020]
GNN RNP-GNN [arxiv, 2021]
GNN DMPNN [AAAI, 2022]

SUBGRAPH MATCHING

Active Learning ActiveMatch [ICBD, 2021]
GNN + RL RL-QVO [arxiv, 2022]

GNN NeuroMatch [arxiv, 2020]
GNN DMPNN [AAAI, 2022]

◑
⧇

●
◑

◑
◑

●
●

●
●

⧇

●
◑⧇

⧇● ◑ ○Semi-supervisedSupervised Unsupervised Reinforcement ScalabilityEfficiencyEffectiveness



Subgraph Problem Approach Effectiveness Efficiency Scalability Flexibility

Summary: Focus of Approaches

Non-ML

ML

Non-ML

ML

Non-ML

ML

Non-ML

ML

COMMUNITY DETECTION

COMMUNITY SEARCH

SUBGRAPH ISOMORPHISM
COUNTING

MAXIMUM COMMON
SUBGRAPH



Subgraph Problem Flexibility Efficiency Training Data Learning Cost

Summary: Pros and Cons of ML Approaches

COMMUNITY DETECTION

COMMUNITY SEARCH

SUBGRAPH ISOMORPHISM
COUNTING

MAXIMUM COMMON
SUBGRAPH



Future Directions
Explore More Models for Subgraph Problems

Supervised
Regression, Classification

Reinforcement
Enumeration, Optimization Semi-Supervised

Contrastive, Adversarial

Self-Supervised
Generative, Active, Transfer

Unsupervised
Embedding, Clustering



Future Directions
Employ hybrid models of ML and non-ML approaches

Non-ML Approach ML Approach

Free-of-training

Easy-explanation

◎

◎

Mature strategy◎

High Flexibility

Better efficiency

◎

◎

Model variety◎



Future Directions
Extend to other graph problems

DENSEST SUBGRAPH Conventional: Network Flow

B. Sun, et al. 2020. KClist++: a simple algorithm for finding k-clique densest 
subgraphs in large graphs. Proc. VLDB Endow. 13, 10, 1628–1640

KClist++ [VLDB’20]: Sample & Search

C. Ma, et al. 2022. A Convex-Programming Approach for Efficient 
Directed Densest Subgraph Discovery. In SIGMOD'22, 845–859.

Ma et al [SIGMOD’22]: Convex Programming 



Future Directions
Extend to other graph problems

BIPARTITE SUBGRAPH Conventional: BnB Search

J. Yang, Y. Peng, and W. Zhang. (p,q)-biclique Counting and Enumeration 
for Large Sparse Bipartite Graphs. PVLDB, 15(2): 141-153, 2022.

BCList++ [VLDB’22]: Backtrack & Prune

K. Yu and C. Long. 2023. Maximum k-Biplex Search on Bipartite Graphs: 
A Symmetric-BK Branching Approach. Proc. ACM Manag. Data. 

FastBB [SIGMOD’23]: Symmetric Branching



Outline

Q&A 20 min



THANK YOU

49th International Conference on Very Large Data Bases
Vancouver, Canada - August 28 to September 1, 2023

Slides available


