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Efficient Community Search in
Edge-Attributed Graphs

Ling Li, Yuhai Zhao, Siqiang Luo, Guoren Wang, Zhengkui Wang

Abstract—Given a graph, searching for a community containing a query vertex is a fundamental problem and has found many
applications. Most existing community search models are based on non-attributed or vertex-attributed graphs. In many real-world
graphs, however, the edges carry the richest information to describe the interactions between vertices; hence, it is important to take the
information into account in community search. In this paper, we conduct a pioneer study on the community search on edge-attributed
graphs. We proposed the Edge-Attributed Community Search (EACS) problem, which aims to extract a subgraph that contains the given
query vertex while its edges have the maximum attribute similarity. We prove that the EACS problem is NP-hard and propose both exact
and 2-approximation algorithms to address EACS. Our exact algorithms run up to 2320.34 times faster than the baseline solution. Our
approximate algorithms further improve the efficiency by up to 2.93 times. We conducted extensive experiments to demonstrate the
efficiency and effectiveness of our algorithms.

Index Terms—Community Search, Edge-Attributed Graphs.

✦

1 INTRODUCTION

Vertex attributed graphs [1], [2], [3] or Edge attributed
graphs [4], [5], [6], which associate rich text information in
their vertices or edges, have been widely adopted in many
fields to capture the various types of data relationships. Ex-
amples include the co-authorship networks, protein-protein
networks, communication networks, and so on [7], [8], [9].

A fundamental topic of attributed graphs is to search a
structurally cohesive and attribute-aware community that
contains a given query vertex. In the studies [4], [5], [7],
[10], [11], [12], [13], the attribute-aware communities are cat-
egorized into vertex-attributed community and edge-attributed
community, and edge attributes are observed more prevalent
in social and other real-world networks than vertex at-
tributes. Moreover, the edge attributes provide information
on network communities’ behaviors, i.e., how and why
entities are related in a network, while the vertex attributes
do not [4], [13]. Thus, the edge-attributed community adds
value to a network by carrying more information than the
vertex-attributed community. For example, in Figure 1, if
the topic of exchanged text messages is considered as the
edge attribute, we can clearly see three edge-attributed
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Fig. 1: A social media network with edge attributes

communities of different topics on pop music, politics and
comedy movies. It is particularly interesting to note that
Ava has edges involved in all the three communities. As
described in [4], [13], such overlapping vertices like Ava
reflect the fact that a given individual may have different
facets to his/her life, which are revealed only in his/her
interactions, i.e., edges, with different people. This suggests
that rather than the vertex attributes, it may sometimes that
the edge attributes provide unparalleled insights which can
be leveraged to create interesting communities.

To our surprise, most existing works focus on the vertex-
attributed community search but little effort has been paid
to the edge-attributed community search. One intuitive so-
lution to address the edge-attributed community search is to
move the edge attributes to vertices and apply the existing
vertex-attributed algorithms. However, such a naive method
may fail in finding qualified edge-attributed communities.
For example, in the co-authorship network shown in Figure
2(a), if two authors co-published a paper, there is an edge
between them and the topics of this paper are the edge
attributes. If the attributes at each edge are shifted to the
two end vertices, the graph is transformed to that in Figure
2(b). In the original graph (Figure 2(a)), {E,F,G,H} forms
a community because all the edges between the vertices
share {ML,AI} and are cohesively connected. Note that
vertex C is excluded from the community because edge
(C,E) contains attributes that are significantly different.
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Fig. 2: Illustrating the ineffectiveness of converting edge attributes to vertex attributes.

While (C,G) has similar edge attributes, C is not cohe-
sively connected with {E,F,G,H} if (C,G) is added to the
community alone. In the transformed graph (Figure 2(b)),
however, a different community {C,E, F,G} is formed
because their vertex attributes all share {DB,ML,AI}. This
effect is due to the lost of edge-vertex attribute mappings. In
other words, when given the transformed graph, we cannot
recover the original attributed graph because it is unclear
how to distribute the vertex attributes to the incident edges.
Except for the simple transforming, the edge-attributed net-
work can also be transformed to a vertex attributes network
by exploring the line graph [14]. In particular, we see each
edge as a vertex. If two edges in the original graph are
adjacent, an edge is connected between the corresponding
vertices in the line graph. Figure 2(c) is the transformed
line graph. Unfortunately, this transformation also leads
to information loss and the best community will not be
found. For example, in Figure 2(c), the vertices in red color
share similar attributes and are cohesively connected. These
vertices correspond to {e8, e9, e10, e11, e12, e13} and form a
community {C,E, F,G,H} in the original graph. However,
the vertex C should be in another community. Another
downside of using the line graph is that the graph size is
significantly increased, which can be up to O(n3), where n
is the number of vertices in the original graph.

The edge-attributed community search lacks tailored
algorithms. To fill this gap, we investigate an attribute-
aware community search problem that focuses on edge at-
tributes and present the Edge-Attributed Community Search
(EACS) problem. EACS extracts a subgraph that is densely
connected while all its associated edge attributes have the
maximum similarity. In particular, EACS employs the classic
k-truss model to capture the structural cohesiveness and
controls the homogeneity of edge attributes by minimizing
the maximum dissimilarity between a pair of edges within
the community. Our experiments in Section 5 show that
our community search model can effectively and efficiently
extract high-quality communities.

TABLE 1: Differences from existing studies.

Graph Type Community Search
with user text input w/o user text input

Non-attributed - [15], [16], [17], [18], [19]
Vertex-attributed [1], [2], [3], [20] [21], [22], [23]
Edge-attributed [5] EACS (This paper)

EACS is different from the existing studies about com-
munities in the graphs. Existing studies mainly fall into
two categories: community detection [4], [7], [10], [11], [12],
[24], [25], [26] and community search [1], [2], [3], [15], [16],

[17], [18], [19], [20], [21], [22], [23]. Community detection
aims to find all communities in a network. In contrast, the
community search problems, including EACS, are different
as they find one densely connected subgraph that contains
the given query vertex. Community search is preferred
when the results need to be customized to the user’s search
and it enjoys much higher computation efficiency. Among
the works in community search, only [5] has considered the
edge attributes (see Table 1). Unlike our studies, [5] requires
users to input keywords to guide the community search.
As [21] mentioned, obtaining appropriate query keywords
can be non-trivial for users. Therefore, being edge-attribute-
centric and text-input free, EACS is different from all the
existing studies.
Challenges and contributions. We prove that the proposed
EACS problem is NP-hard. Compared with the vertex-
attributed community search, the edge-attributed commu-
nity search is usually more complex since the number of
edges is often larger than the number of nodes in real
word graphs. When focusing on the edges, the complexity
is generally high. Thus, how to develop an edge-attributed
community search algorithm with high effectiveness and
efficiency is a challenge. A straightforward solution is to
enumerate all possible subgraphs that satisfy the minimum
truss value k. However, the number of enumerated sub-
graphs could reach O(2m), where m is the number of edges.
The method is therefore prohibitive.

To efficiently compute EACS, we develop several novel
techniques. First, we present an index structure that is based
on a new concept called (k, d)-truss. The index structure
can effectively reduce the search space. Second, during the
search, we develop one candidate reduction rule, two early-
search-termination techniques, and one edge selection rule
to reduce the number of search branches. Finally, we de-
velop two efficient polynomial 2-approximation algorithms.
The main contributions of our work are summarized as
follows.

• We propose a novel edge-attributed community
search (EACS) problem. We prove that the EACS
problem is NP-hard.

• We develop an efficient exact algorithm for the
EACS problem with novel techniques, including pre-
processing, candidate reduction, early termination,
and edges selection. The algorithm produces high-
quality communities and runs 2320.34 times faster
than the baseline approach.

• We also develop two novel polynomial approxima-
tion algorithms on top of the exact algorithm we
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TABLE 2: Frequently used notations

Notation Meaning
G an undirected edge-attributed graph

NG(u) the set of neighbors of u in G
degG(u) the degree of u in G

supH(u, v) the number of triangles in H containing (u, v)
supdH(u, v) the number of d-triangles in H containing (u, v)

τ (e) the trussness of e in G
d∗k(e) the score trussness of e in G

d(ei, ej) the edge dissimilarity score between two edges

D(H)
the maximum edge dissimilarity

score among all edges in H
d̄ the upper bound of the edge dissimilarity score

d and d′ two lower bound of the edge dissimilarity score

proposed. We show that the algorithms achieve a
2-approximation regarding the metric score defined
in EACS. The approximate algorithms can run 2.93
times faster than the advanced exact algorithm.

• We conduct extensive experiments on real networks.
The results demonstrate the efficiency and effective-
ness of the proposed algorithms.

Outline. We formulate the EACS problem in Section 2. In
Section 3, a basic exact method is proposed. In Section 4, we
present the advanced exact algorithm and approximation
algorithms. We show experimental results in Section 5. We
review the related works in Section 6 and conclude the
paper in Section 7.

2 EACS
In this section, we first introduce the concepts and models
for the Edge-Attributed Community Search (EACS). Then,
we show the hardness of EACS.

2.1 Concepts and Models
We focus on an undirected G = (VG, EG), where VG is
the set of vertices and EG is the set of edges. The set of
attributes associated with each edge e∈EG is denoted as
attre. Let n = |VG| and m = |EG| be the numbers of vertices
and edges, respectively. Given vertex u∈VG, the neighbor
set of u is NG(u)={v|(u, v)∈EG} and the degree of u is
degG(u)=|NG(u)|. An edge induced subgraph H=(VH , EH )
of G satisfies EH⊆EG, and for every edge (u, v)∈EH we
have u, v∈VH . A triangle induced on vertices u, v, w ∈VG is
denoted as ∆uvw.

We measure the structural cohesiveness of a community
using the connected k-truss. Given a graph G and an integer
k, the connected k-truss of G is the connected subgraph H of
G such that for each (u, v)∈EH , supH(u, v) ≥ k − 2, where
supH(u, v)=|{w|w∈VH ,∆uvw∈H}|. The trussness of an edge
e∈EG, denoted by τ (e), is the largest k such that a k-truss
contains e. We choose the k truss-based model instead of
the k-core-based model [17] because a k-truss is an edge-
induced subgraph and it can be more naturally integrated
into the edge-attributed community search.

In the following, we will introduce how to capture
similar actions among cohesively interaction vertices. Note
that most community search approaches focus on finding
vertex-induced communities by exploring the links and
vertex attributes, while we are interested in edge-induced
communities with similar edge attributes. Hence, we need
to define a function to capture similar edges with informa-
tion encoded. In this paper, we mainly focus on the edge

attributes that are in form of the text document. Similar
definitions can be used for other formats.

Definition 1. Edge Dissimilarity Score d. Given two edges
ei and ej , the edge dissimilarity score is d(ei, ej)=1-
|attrei∩attrej |
|attrei∪attrej |

, where attrei∩attrej is the set of common
words from both attrei and attrej , and attrei∪attrej is
the union of the words from both attrei and attrej .

Definition 2. Graph Dissimilarity Score D. Given an undi-
reacted graph G, the dissimilarity score of this graph is
D(G)=max ei,ej∈EG

d(ei, ej).

Intuitively, an interesting community should be densely
connected, and all the edges carry sufficiently similar infor-
mation. Hence, we define the following community search
problem concerning the two factors.

Definition 3 (EACS). Given a graph G, a query vertex q, and
a parameter k, the edge-attributed community search
(EACS) aims to find the maximum subgraph H of G
such that it satisfies the following conditions:

1) k-truss constraint. H is a connected k-truss and con-
tains q.

2) Edge-attributed constraint. D(H) is minimized
among all subgraphs of G satisfying the above truss
constraint.

In the problem definition, the k-truss constraint ensures
that the subgraph is densely connected. The edge-attributed
constraint guarantees that every pair of edges is sufficiently
similar. We call a subgraph of H that satisfies all two
conditions an optimal solution. A connected k-truss sub-
graph containing q is denoted as a possible subgraph, which
means the optimal solution may be contained in this graph.
Note that, the optimal solutions are not unique. So we aim
to find the maximum subgraph which has the maximum
number of edges.

Example 1. Consider the edge-attributed graph shown in
Figure 2(a). Given q=E, k = 3, vertices E, F, G, H com-
pose a connected 3-truss and the subgraph induced by
them has the minimum graph edge dissimilarity score.
According to the problem definition, they composed an
edge-attributed community. However, using the existing
vertex attributes solution [21] on two transformed vertex
attributes graphs, we will obtain {C, E, F, G} or {C, E,
F, G, H}. The first one misses vertex H and includes
C while the other one includes C. We can see that
the existing vertex attributes solution can not capture
edge attributes cohesiveness well on transformed vertex
attributes networks.

2.2 Hardness of EACS

Theorem 1. The EACS problem is NP-hard for k≥4.

Proof: We prove that the decision version of the EACS
problem is NP-hard by reducing an instance of the k′-clique
problem that is NP-hard. The decision EACS problem is
as follows: given a graph G(V,E), a query vertex q, a
parameter k and a score d, determining whether G has
a subgraph H such that H is a k-truss containing q and
D(H)≤d.
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Given an instance of the k′-clique problem with G(V,E)
and an integer k′, which aims to determine whether G has a
clique with k′ vertices. We reduce it into a decision EACS
problem as follows. We add a dummy vertex q, and an
edge between q and every vertex of V . Then the resulting
graph G′=(V ′, E′), where V ′=V ∪{q}, E′=E∪{(q, u)|u∈V }.
For each 4-clique C4

i in G′, we add C4
i as edge attributes

for each edge e∈C4
i . The query of decision EACS problem

is as follows: given query vertex q, the parameter k and
d=1- 1

(|E
′|

6 )
. For all (k − 2)-cliques Ck−2

i in G′, we have

D(Ck−2
i )≤d, which means the (k− 2)-clique which contain

q is the solution of decision EACS problem and V (Ck−2
i )\q

is a is a (k-3)-clique in G. For a solution H in G′, due to
D(H)≤1- 1

(|E
′|

6 )
, we have each pair of edges (ei, ej) from

E(H) is at least in a same 4-clique, which means H is a
clique in G′. Otherwise, there must be a vertex u and a
vertex v in H , and vertex u and vertex v have no edge.
Then the edges composed of the neighbors of u and u and
the edges composed of the neighbors of v and v can not
be in at least a same 4-clique, which means existing at least
two edges, i.e., ei and ej , the d(ei, ej)=1-0>1- 1

(|E
′|

6 )
. Then

we have D(H)>d=1- 1

(|E
′|

6 )
. It is a contradiction.

It is concluded that C⊆V is a clique in G if and only if
C∪q is a solution to the decision EACS problem in G′. Since
finding cliques in a graph is NP-hard and the reduction
process can be done in polynomial time, the decision EACS
problem is NP-hard.

3 BASIC SOLUTION

We first present a basic solution (BasExact) to EACS. The
main idea is based on the observation that a solution to
EACS must be contained in a connected k-truss. Therefore,
BasExact enumerates the maximal connected k-truss con-
taining q as the candidate supergraph of the final solution,
and then refines it by shrinking the supergraph to get the final
solution with the minimum graph dissimilarity score.

The pseudo-code is given in Algorithm 1. It first com-
putes the maximal connected k-truss containing q by the
existing k-truss computation algorithm [27](Line 1). We
denote the k-truss by Hk and the solution for EACS must be
contained in Hk because of the truss cohesiveness constraint
of EACS. In the meanwhile, as for the query vertex q, there
must be one edge that is adjacent to q being contained in the
solution to EACS. Therefore, Algorithm 1 explores all edges
that are adjacent to q in Hk to get the initial partial solution
M∪C , where M maintains the chosen edges for the solution
and C maintains the candidate edges (Lines 3-6) of the
solution. The Hk is separated into M and C(= E(Hk)\M)
to be further refined via the NaiveShrink procedure. In the
while loop (Lines 7-13), Algorithm 1 iteratively shrinks the
subgraphs and updates the current best solution until no
subgraphs can be further shrunk. As M must be contained
in the current partial solution, if D(M ) is already larger
than the current best score d∗, no better solutions exist in
M∪C . Also, if D(M ) is equal to d∗ but the number of edges
of M∪C is smaller than that of the current best subgraph
opt, there is no better solution in M∪C either (Lines 9-10).
Hence, we can safely skip checking the subgraphs in M∪C

Algorithm 1: BasExact
Input: Graph G, a query vertex q, parameter k.
Output: A k-truss opt with minimum graph

dissimilairy score.
1 Let Hk be the connected k-truss of G containing q;
2 queue={(M=∅, C=∅)}, d∗=1, opt=∅;
3 for each ei adjacent to q and ei∈E(Hk) do
4 M←ei;
5 C←E(Hk)\ei;
6 queue.insert((M , C));

7 while queue̸=∅ do
8 (M , C)=queue.pop();
9 if D(M )>d∗ or D(M )=d∗ ∧ |M∪C|≤|opt| then

10 continue;

11 else
12 update opt←M∪C , d∗ ←D(M∪C);

13 NaiveShrink(M , C , queue);

14 return opt;
15 Procedure NaiveShrink(M , C , queue)
16 if C ̸=∅ then
17 e←select an edge from C ;
18 queue.insert((M∪e, C\e));
19 H←get connected k-truss containing M from

M∪C\e;
20 if H ̸=∅ and q⊆V (H) then
21 queue.insert((M , E(H)\M ));

in these two cases. In other cases, Algorithm 1 updates
the current optimal solution opt and d∗ (Lines 11-12) and
searches for a solution within M ∪C by invoking the proce-
dure NaiveShrink (Line 13). The procedure NaiveShrink (Line
15) enumerates a possible k-truss with a smaller graph edge
dissimilarity score. To enumerate all possible subgraphs,
NaiveShrink partitions the search space into (M∪e, C\e)
and (M , C\e) for a randomly selected edge (Lines 17-21),
where the former includes e in the subgraph, and the latter
excludes e from the subgraph. Note that when removing
an edge from C , the possible subgraph must contain M
and is a connected k-truss (Line 19). In the while loop of
Algorithm 1, the whole process corresponds to a binary
enumeration tree.
Complexity Analysis. The main part of Algorithm 1 is to
enumerate all k-truss containing query vertices, which costs
O(2|E(Hk)|) in the worst case. Another part is to maintain
connected k-truss in the NaiveShrink search procedure
when an edge is removed (Line 13). This can be solved in
O(
∑

(u,v)∈M∪C min{degM∪C(u), degM∪C(v)})=O(|M∪C|1.5).
In the while loop, Algorithm 1 computes the edge
dissimilarity score for each graph M∪C , and it costs
O(|M∪C|2) time (Line 14). As |M∪C| is smaller
than |E(Hk)|, the complexity of Algorithm 1 is
O(2|E(Hk)|(|E(Hk)

2|).
Remarks. The cost of Algorithm 1 can be high in processing
large graphs, and there is still room for improving the
efficiency. First of all, Algorithm 1 does not adopt any pre-
processing approach to efficiently reduce the search space,
which results in generating many redundant intermediate
subgraphs. Secondly, in the search process, NaiveShrink does
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not adopt any candidate set pruning rules. However, given
the current optimal d∗, many edges of C will not be part of
the optimal solution. Also, a simple lower bound for D(M )
is used, which can not terminate the unpromising search
earlier. Finally, in the NaiveShrink search procedure, some
subgraphs can be searched multiple times. The reason is
that, in each enumeration, NaiveShrink partitions the search
space into (M∪e, C\e) and (M , C\e). The subgraph gener-
ated by M∪e and C\e is the same as the subgraph generated
by M and C . This subgraph will be computed about the
dissimilarity score again. Hence, in the next section, we
present more advanced solutions for EACS.

4 ADVANCED SOLUTIONS

In this section, we present advanced solutions for EACS.
We first introduce a novel concept (k, d)-truss, which is tai-
lored to our advanced solutions (see Section 4.1). Then, we
present an advanced exact solution (AdvExact) equipped
with a number of interesting techniques based on the (k, d)-
truss (see Section 4.2). Finally, based on the advanced exact
solutions, we propose two 2-approximation algorithms to
further speed up the computation of EACS (see Section 4.3).

4.1 (k, d)-truss

The (k, d)-truss is an extension of the k-truss by integrating
the triangle edge support d. Given a triangle ∆uvw of an
undirected edge-attributed graph G(V , E) and a parameter
d, if D(∆uvw)≤d, ∆uvw is called a d-Triangle (∆d

uvw) of G.
We first give the definition of d-Triangle edge support.

Definition 4. d-Triangle Edge Support. Given a parameter
d, the d-Triangle edge support of an edge (u, v) in G,
denoted by SupdG(u, v), is the number of d-Triangles in
G containing (u, v), i.e., SupdG(u, v)=|{w| ∆d

uvw∈G}|.

Based on the definition of the d-Triangle edge support,
we define (k, d)-truss as follows.

Definition 5. (k, d)-truss. Given an undirected edge-
attributed graph G, a score d and an integer k≥3, a
subgraph H is a (k, d)-truss of G if ∀ (u, v)∈E(H),
SupdH(u, v)≥k-2.

A (k, d)-truss H is maximal if there does not exist a (k,
d)-truss H ′⊆G such that H⊂H ′.

Example 2. Figure 3 shows an example of an edge-attributed
graph. The edge (v1, v4) forms 0-Triangle with ver-
tex v2 and forms 0.5-Triangle with vertex v5. Hence,
Sup0.5G (v1, v2)=2. Since edges (v1, v2), (v1, v4), (v1, v5),
(v2, v4), (v2, v5), (v4, v5) are all contained by at least two
0.5-Triangles, they compose of a (4, 0.5)-truss. Note that
this subgraph is also a maximal (4, 0.5)-truss.

Lemma 1. The maximal connected (k, d)-truss of G is
unique.

Proof: We assume by contradiction that there
exist two different maximal connected (k, d)-trusses,
H1 and H2, E(H1)̸=E(H2) and E(H1)∩E(H2) ̸=∅. As
E(H1)∩E(H2)̸=∅, they can form a larger connected (k, d)-
truss H1 ∪H2. The contradiction ensues.

To obtain the (k, d)-truss, we can iteratively remove the
edges whose d-Triangle support is less than k-2. However,
if the graph is large, many edges will need to be removed,
leading to low efficiency. To quickly locate the maximum
possible subgraph (k, d)-truss, we propose an index, called
the KdTruss-Index. The main idea of this index is to main-
tain the (k, d)-truss for every possible k and d. Then, given
any k and d, the index can support (k, d)-truss computation
in optimal time. For ease of presenting the KdTruss-Index,
we first give the following lemma and definition.

Lemma 2. Given an edge-attributed graph G, a maximal (k,
d)-truss must be contained in a maximal (k′, d′)-truss if
k≥k′, d≤d′.

Proof: We assume that the maximal (k, d)-truss and
the maximal (k′, d′)-truss are H and H ′ respectively.
∀e∈E(H), SupdG≥k − 2. As d′≥d, we have Supd

′

G≥k − 2.
So H is a (k, d′)-truss. Due to k′≤k, H must be a (k′, d′)-
truss. As the maximal (k′, d′)-truss is unique, we have H
must be a subgraph of H ′.

Based on Lemma 2, for an edge e ∈ E and the minimum
value dmin, if e is contained in a maximal (k, dmin)-truss, e
must belong to a maximal (k, d)-truss for d≥dmin. Hence,
we can construct an index by sorting all edges according to
the minimum d value of edges for a given k. Next, we give
the formal definition for this minimum d value, which is
called score trussness.

Definition 6. Score Trussness. Given an edge-attributed
graph G and a positive integer k ≥ 3, ∀ e∈E, the score
trussness of e, denoted by d∗k(e), is the minimum d such
that e is contained in a (k, d)-truss.

The KdTruss-Index can be regarded as a list L, where
L[k] stores the sorted edges in descending order of the score
trussness of each edge in k-truss. Based on this structure,
we can quickly locate the (k, d)-truss. In the following, we
introduce the construction of this index.

Note that if an edge only has k-2 d-Triangles in the k-
truss, its score trussness must be at most d. Hence, the
main idea of building KdTruss-Index is to iteratively peel an
edge with the maximum d such that Supdk(e)=k-2 in the k-
truss. The pseudo-code of building KdTruss-Index is shown
in Algorithm 2. It first performs the truss decomposition
algorithm [27] on G and finds the maximum kmax such that
there exists a kmax-truss (Line 1). Then in Lines 3-17, for
each k from 3 to kmax, the algorithm iteratively processes
L[k]. In particular, it first computes the maximum dmax

by exploring each edge e with SupdHk
(e)=k (Line 6). Then,

the algorithm iteratively removes the edges whose dmax-
Triangle support is less than k-2 (Lines 7-17). Once an edge
is removed from Hk, this edge and corresponding dmax is
added into L[k] (Line 17). Note that in the while loop (Lines
10-17), when an edge (u, v) is removed, it needs to compute
the d-Triangle support for edges that are composed of a
triangle with (u, v), i.e., (u,w), (v, w) ∈∆u,v,w. To avoid
recomputing the d-Triangles for corresponding edges, we
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Algorithm 2: KdTruss-Index
Input: Graph G.
Output: The KdTruss-Index L.

1 Perform truss decomposition on G and get the
maximum trussness kmax;

2 queue←∅;
3 for k←3 to kmax do
4 Hk←k-truss of G;
5 while E(Hk) ̸=∅ do
6 dmax←maximum d that SupdHk

(e)=k,
∀e∈E(Hk);

7 for e∈E(Hk) do
8 if Supdmax

Hk
(e)≤k-2 then

9 queue←queue∪{e};

10 while queue̸=∅ do
11 Pop out an edge (u, v) from queue;
12 for w∈NHk

(u)∩NHk
(v) do

13 for e∈{(u, w), (v, w)} do
14 if Supdmax

Hk\(u,v)(e)≤k-2 then
15 queue←queue∪{e};

16 Remove e from Hk;
17 L[k].add((dmax, e));

18 return L;

can maintain an array Array that keeps the score D(∆u,v,w)
in Array[e] if e is in this triangle. When an edge e is
required to update the d-Triangles support, we remove the
corresponding score from Array[e]. Then, the updated d-
Triangles support of the edge is the number of scores that is
less than d in Array[e]. Since Array keeps the edges that are
not removed. If we have obtained (k, d1)-truss, to compute
the (k, d2)-truss with d2 ≤ d1, we only need to compute
from (k, d1)-truss.
Complexity Analysis. Algorithm 2 first performs the truss
decomposition algorithm, which costs O(E(G)1.5) time.
Then, it iteratively removes edges, where all triangles in-
volving any of the removed edges should be enumerated.
This step costs

O

 ∑
(u,v)∈E(Hk)

min{degHk (u), degHk (v)}

 = O
(
|E(Hk)|1.5

)
Overall, Algorithm 2 costs

O

(
E(G)1.5 +

kmax∑
k=3

|E(Hk)|1.5
)

Index-based (k, d)-truss Finding. To obtain the maximal
connected (k, d)-truss, we can first determine the edge
which first appears with score trussness of d in L[k]. Then,
all edges behind this edge in L[k] belong to the maximal
(k, d)-truss. Therefore, we can find the maximal connected
subgraph from these edges.

4.2 The Advanced Exact Solution
In this section, we introduce an advanced exact solution
(AdvExact). The main idea is to prune the graph and reduce
the search branches. The skeleton of the algorithm is shown
in Algorithm 3. It first applies a (k, d)-truss based pruning

Algorithm 3: AdvExact
Input: Graph G, a query vertex q, parameter k.
Output: A k-truss opt with minimum graph

dissimilairy score.
1 Conduct graph pruning based on (k, d)-truss;
2 Algorithm 1 Lines 2-13 and replace NaiveShrink by

AdvancedShrink (see Algorithm 7);
3 return opt;

on the input graph (Line 1). Then, in the pruned graph,
the procedures are the same as in Algorithm 1 (Line 2),
except that the NaiveShrink is replaced by AdvancedShrink.
We note that the (k, d)-truss based pruning and the new
shrink procedure AdvancedShrink is where the novelty of
Algorithm 3 exists.
The (k, d)-truss pruning (Algorithm 3 Line 1). Let d∗ be
the dissimilarity score of the optimal H∗, we have the
following lemma.
Lemma 3. Given an undirected edge-attributed graph G and

d∗, the optimal solution H∗ must be contained in the
maximal connected (k, d∗)-truss of G that contains q.

Proof: Based on the problem definition, the edge dis-
similarity score of each pair of edges must be smaller than
d∗, so each triangle in H∗ must be a d∗-Triangle. As H∗ is
a k-truss, each edge is contained by at least k d∗-Triangles,
indicating that H∗ is a (k, d∗)-truss. Because the optimal
solution H∗ must be a connected subgraph containing q and
the maximal connected (k, d∗)-truss containing q is unique,
H∗ must be contained in the maximal (k, d∗)-truss of G that
contains q.

Based on Lemma 3, a (k, d)-truss can be used to prune
irrelevant edges before enumerating subgraphs. Although
the (k, d∗)-truss-based pruning can be effective, it requires
knowing d∗. However, finding the exact d∗ is NP-hard as
it in turn needs to compute the optimal solution of EACS.
To address this challenge, we give an upper bound d̄ of d∗

and make use of the property that the maximal connected
(k, d∗)-truss must be contained in the maximal (k, d̄)-truss
(by Lemma 2). We further show that computing d̄ can
be finished in polynomial time. The key idea is to find a
possible connected k-truss H that contains the query vertex
q and has a small graph dissimilarity score D(H). Then we
treat D(H) as the upper bound of d∗.

For this purpose, we propose an algorithm, GreedyUp-
perBound to find a possible k-truss that contains q. The
pseudo-code is shown in Algorithm 4. Algorithm 4 regards
the edges which are adjacent to q as a center. Then, the
algorithm iteratively removes the edges that have the max-
imum edge dissimilarity scores with respect to the chosen
e (Lines 5-12). In this step, once some edges are removed,
it needs to maintain the connected k-truss (Line 9). In
particular, we first iteratively remove the edges that have
not been contained in k-2 triangles to obtain the k-truss
and then discover the connected subgraphs that contain q.
Then it updates the current best score d (Lines 10-11). Until
q ̸⊆V (H), the while loop terminates. After all edges that are
adjacent to q have been processed, it returns d̄=D(H ′) as the
upper bound of d∗. The upper bound holds because based
on Algorithm 3, d̄ is always updated by the connected k-
truss containing q.
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Algorithm 4: GreedyUpperBound
Input: Graph G, integer k, a query vertex q.
Output: an upper bound d̄.

1 Let Hk be the k-truss of G containing q;
2 d←1, H ′=∅;
3 for each eq is adjcent to q do
4 H=Hk;
5 while q⊆V (H) do
6 dmax←arg maxei∈E(H)d(ei, eq);
7 S←{ei|d(ei, eq)≥dmax, ei∈E(H)};
8 Delete S from E(H);
9 H ′′← connected k-truss containing q induced

by E(H);
10 if H ′′ ̸=∅ and dmax<d then
11 d = dmax;H

′=H ′′;

12 H = H ′′;

13 d̄ = D(H ′);
14 return d̄;

Complexity Analysis. Algorithm 4 first computes a k-
truss of G, which costs O(|E(G)|1.5) time. Then, for
each edge adjacent to q, it iteratively deletes the edges
with the largest edge dissimilarity score from Hk. In
this process, computing the dissimilarity sore requires
O(|E(Hk)|) time, and maintaining a connected k-truss needs
O(|E(Hk)|1.5) time. Assuming that l is the maximum num-
ber of iterations in the while loop, Algorithm 4 takes
O(|E(G)|1.5+deg(q)(l|E(Hk)|1.5)) time.

Note that Algorithm 4 needs to process all edges that
are adjacent to the query vertex q. However, there exists
redundant computation. Let us consider Lines 4 in Algo-
rithm 4. Let e1 and e2 be the edges that are adjacent to the
query vertex q. If we first explore e1 and obtain an upper
bound d̄. When processing e2, we still need to iteratively
remove edges from the k-truss Hk. Indeed, by exploring the
obtained d̄, we can process e2 in a smaller subgraph. Next,
we introduce a Lemma, which promises further pruning
without affecting the final d̄.
Lemma 4. Given a k-truss Hk containing q and d̄, if there

exists a smaller d̄′, then the k-truss H ′
k containing q with

D(H ′
k)≤d̄′ must be contained in the maximal (k, d̄)-truss.

As the (k, d̄)-truss must be the subgraph of the maximal
k-truss. By Lemma 4, in Line 4 of Algorithm 4, we can use
KdTruss-Index to directly get the (k, d̄)-truss instead of k-
truss to refine the search space.
AdvancedShrink (Algorithm 3 Line 2). The (k, d)-truss
based pruning is applied before search. Here, we introduce
the AdvancedShrink procedure with several techniques that
are used to efficiently generate candidate subgraphs that
contain the final solution.

Observation 1. a partial solution M∪C , the current best score
d that is the recorded optimal graph edge dissimilarity score till
now, the optimal solutions with smaller scores must be contained
in the connected k-truss induced by edges S, where S={ei|d(ei,
ej)≤d, ∀ ei∈C , ej∈M}.

By this observation, when certain edges are removed,
the remaining graph should always be a connected k-truss
while containing M . To satisfy this constraint, the disquali-
fied edges will be further removed, giving us the following

rule for generating smaller candidate subgraphs that could
contain the final solution.

Candidate Reduction Rule. Given a partial solution M∪C
and the current best score d, we can remove all edges from C\S
and any edge e from S if the trussness of e τM∪C\S(e)<k-2.

Note that once applying the candidate reduction rule on
C , if C becomes empty or there exists no connected k-truss
containing M , the search of the branch can be terminated
immediately. Here, we introduce two lower bounds of d∗,
which could be used to terminate the search early. Given a
partial solution, if the current best score d∗ is less than the
lower bounds, we do not need to enumerate the possible
subgraphs of this partial solution. The key idea of comput-
ing the lower bounds is to use the current partial solution
M∪C to compute the subgraph k-truss H that contains M
while D(H) is the smallest. However, directly computing
the lower bound in this way is equal to finding the optimal
solution in M∪C , which is NP-hard. Instead, we find re-
laxed lower bounds. Let d∗(M∪C) be the optimal solution.
We first introduce a lower bound by mainly considering the
edges in M (Definition 7), followed by another lower bound
considering the whole M∪C (Definition 8).

Definition 7. Lower Bound d. Given partial solution M , the
(k, d)-truss based lower bound of d∗(M∪C), denoted by
d(M), is the smallest value d such that there is a (k, d)-
truss containing M .

Lemma 5 shows the correctness of the lower bound d.

Lemma 5. Given partial solution M∪C and integer k,
d(M)≤d∗(M∪C).

Proof: Based on Lemma 3, M is contained in (k,
d∗(M∪C))-truss. As d(M) is the smallest d such that (k,
d)-truss contains M , we have d(M)≤d∗(M∪C).

Note that the aforementioned lower bound only con-
siders the edges in M . In certain cases, this lower bound
may not be tight. Here, we design another lower bound by
exploring both M and C . The computation of a lower bound
could be converted to another problem, i.e., how to add
edges into M from C to let M become a connected k-truss
with the smallest dissimilarity score. Note that addressing
this problem exactly can incur high complexity; hence, we
use the greedy method to obtain a lower bound as follows.

Definition 8. Lower Bound d′. Given partial solution
M∪C , the greedy based lower bound of d∗(M∪C),
denoted by d′(M∪C), is the smallest value d such that
M∪{e|D(M∪e)≤d, e∈C} is composed a connected k-
truss containing M .

Lemma 6. Given partial solution M∪C and integer k,
d′(M∪C)≤d∗(M∪C).

Proof: As d′(M∪C) is the minimum d that M
could be expanded to a connected k-truss, we have
d′(M∪C)≤d∗(M∪C). Otherwise, d∗(M∪C) will be the
minimum d that M could be expanded to a connected k-
truss.

Lemma 7. Given partial solution M∪C and integer k,
if e∈M and SupM∪C(e) = k − 2, {e′ | e′∈C , s.t.
∃e′′∈M∪C , e′, e′′, and e compose a triangle} must exist
in the optimal k-truss generated by current solution.
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Algorithm 5: LowerBound
Input: The chosen edges set M , candidate C , integer

k, KdTruss-Index L.
Output: a lower bound d∗.

1 M ′=M∪{e′|e′∈C, s.t.∃e∈M , e′′∈C , e′, e′′, and e
compose a triangle}, C ′=C \M ′;

2 count=0; d(M)=0;
3 for e∈L[k] do
4 if e∈M then
5 count++;

6 if count=|M | then
7 d(M)=d∗k(e);

8 d′(M ′∪C ′)=d(M), S←M ′;
9 while True do

10 for e∈C ′ do
11 if D(M ′∪{e})≤d′(M ′∪C ′) then
12 S=S∪{e};

13 if S composed a connected k-truss containing
M ′ then

14 break;

15 else
16 d←arg mine∈C′\S∧D(M ′∪e)>d′(M ′∪C′)

D(M ′∪e);
17 d′(M ′∪C ′) = d;

18 return max(d(M), d′(M ′∪C ′))

Proof: As the edges in M must exist, to satisfy the k-
truss constraint, if an edge e with SupM∪C(e) = k − 2, the
edges that with e compose triangles must exist.

Based on Lemma 5, Lemma 6 and Lemma 7, we
obtain our final lower bound d∗ by considering the
maximum value between d(M ′) and d′(M ′∪C ′), where
M ′=M∪{e′|e′∈C, s.t.∃e∈M , e′′∈C , e′, e′′, and e compose
a triangle}, C ′=C \M ′. We can efficiently obtain d(M ′) by
determining edges inL[k] of the KdTruss-Index. To compute
the lower bound d′(M ′∪C ′), we need to increase d′(M ′∪C ′)
from a small value (e.g., 0) to a possible dmax so that M ′

and {e|D(M ′∪e)≤dmax, e∈C ′} can compose a connected k-
truss. However, when the initial value is too small, it will
lead to the redundant computation. Interestingly, we can
use the d(M) to be the initial value of d′(M ′∪C ′) instead
of increasing d from 0. The pseudo-code of discovering the
lower bound d∗ is shown in Algorithm 5. It first explores
the KdTruss-Index to find d(M ′) (Lines 2-7). As all edge
in L[k] is sorted in descending order according to score
trussness, it iteratively determines the edges in L[k] until
all the edges in M ′ are found (Lines 3-7). Then the score
trussness of the final found edge is d(M ′) (Line 7). Next, it
evaluates d′(M ′∪C ′) (Lines 8-17). It initializes d′(M ′∪C ′) as
d(M) (Line 8). Then in each iteration of the while loop, for
each edge in C ′, it adds all edges whose edge dissimilarity
scores (to M ′) are less than d (Lines 10-12). If the edges in S
compose a connected k-truss containing M ′, the d′(M ′∪C ′)
is found (Lines 13-14). Otherwise, a larger value d′(M ′∪C ′)
is obtained to merge more edges into S (Lines 15-17).
Complexity Analysis. As Algorithm 5 needs to explore
all edges in L[k] in the worst case (Lines 2-7), the time
complexity is O(|L[k]||M ′|). Let ℓ be the number of iterations

in the while loop (Lines 8-17). As in each iteration, each edge
is checked whether it could be added into S, which costs
O(|C ′|). Additionally, verifying the connected k-truss costs
O(|S|1.5). Because in the worst case, S=C ′, the overall time
complexity of all iterations is O(ℓ|C ′|1.5). Thus, the total time
complexity is O(|L[k]||M ′|+ℓ|C ′|1.5).
Proper Edge Selection. Note that if we could obtain a
candidate subgraph with a small dissimilarity score early,
then many branches that will not generate the candidate
subgraph with a smaller dissimilarity score can be skipped
early. The key idea of achieving this goal is how to select
edges to partition the search space. Recall the NaiveShrink
function in Algorithm 1, it randomly selects an edge e and
partitions the search space into two parts, i.e., (M∪{e},
C\{e}) and (M , C\{e}). However, this partitioning ap-
proach will lead to redundant computation and will explore
many irrelevant branches. We observe that if an edge e with
the maximum D(M∪{e}) is added into M , the generated
branches will be early terminated with high probability.
Thus, we can select the edges with the maximum D(M∪{e})
to generate branches.

However, the above simple edge selection method still
receptively generates the same subgraphs. Note that during
the search, we always keep the reduced subgraph as a con-
nected k-truss. Removing an edge from M∪C will lead to
the removal of other edges and could get a candidate graph
with a small dissimilarity score as fast as possible. Thus, we
could enumerate candidate subgraphs by removing edges
instead of generating a subgraph that is not changed, i.e.
(M∪{e}, C\{e}). To achieve this goal, we first introduce the
following definition and lemma.

Definition 9. Exclusion Set. Given partial solution M∪C
and a score d, the exclusion set, denoted by Sd(M∪C), is
the edge set s.t. ∀ ei, ej∈Sd(M∪C), we have d(ei, ej)>d
and Sd(M∪C)⊆C .

Lemma 8. Given partial solution M∪C , the current
best score opt and Sopt(M∪C), the optimal solution
can only be from (M∪{ei}, C\Sopt(M∪C)) and (M ,
C\Sopt(M∪C)), where ei∈Sopt(M∪C).

Proof: During the search, given a partial solution
M∪C , we always want to find a candidate subgraph with
a smaller score compared to the current best score opt. As
all pairs of edges in Sopt(M∪C) have scores that are larger
than opt, we can safely remove other edges from Sopt(M∪C)
once an edge from Sopt(M∪C) is chosen to join M .

Based on Lemma 8, we could generate multi branches,
and each subgraph induced by these branches is must
smaller than the original partial solution M∪C . One issue
is when D(M∪C)=opt, Sopt(M∪C) will be empty. To solve
this problem, we propose another set S′

opt(M∪C) s.t. ∀ ei,
ej∈S′

opt(M∪C), d(ei, ej)=opt, S′
opt(M∪C)⊆C .

Although by exploring the exclusion set, we could reach
a smaller subgraph as soon as possible, obtaining the ex-
clusion set is still a challenge. By definition, finding an
exclusion set is equal to discovering a clique in a graph GC

based on C , where each edge in C is seen as a vertex in GC

and if d(ei, ej)>d, an edge exists in GC . In addition, we also
need to consider selecting the edge e with the maximum
D(M∪e). To efficiently find a promising exclusion set, we
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Algorithm 6: ExclusionSet
Input: Chosen edges M , candidate edges C , a score

d.
Output: Exclusion set Sd(M∪C).

1 S←Sort all edges of C in descending order of
D(M∪{e}), e∈C ;

2 for e∈S do
3 Sd(M∪C)={e};
4 for ei∈S do
5 if ei /∈Sd(M∪C)∧d(ei, ej)>d,∀ej∈Sd(M∪C)

then
6 Sd(M∪C)=Sd(M∪C)∪{ei};

7 if | Sd(M∪C)|≠1 then
8 return Sd(M∪C);

could first sort all edges of C in descending order. Next, we
iteratively add an edge e with d(e, ei)>d, ∀ei∈Sd(M∪C).

The pseudo-code of finding a promising exclusion set is
shown in Algorithm 6. It first sorts all edges (Line 1). Then it
selects an edge from S to get the exclusion set by iteratively
determining whether an edge could be added to the current
exclusion set (Lines 2-8). If not added, it selects another edge
to obtain the exclusion set. If the size of the exclusion set is
not equal to 1, it terminates (Lines 7-8). Note that S′

d(M∪C)
could be computed in a similar fashion; we omit the details
due to space limitations.
Complexity Analysis. Algorithm 6 first sorts all edges in C ,
which needs O(| C |2|M |). Then for each edge in S, it costs
O(| C || Sd(M∪C) |) time to add edges into Sd(M∪C). In
the worst cases, Algorithm 6 will explore all edges in C. So
the total time complexity is O(| C |2|M |+|C|2|Sd(M∪C)|).
Advanced Shrink Method. Equipped with all the tech-
niques mentioned earlier, we develop an advanced shrink
algorithm to enumerate all candidate subgraphs. The
pseudo-code is shown in Algorithm 7. It first applies the
candidate reduction rule (Line 1). If the candidate set C
becomes empty, there will be no candidate subgraph enu-
merated (Lines 2-3). Note that if C is changed, it needs
to maintain the k-truss connectivity (Line 5). If q does not
belong to V (H), this search branch can be terminated (Lines
6-7). Then, it updates the current optimal solution as M and
new C may compose a new candidate subgraph (Lines 8-
9). Next, we could use the lower bound d∗ to determine
whether this branch could be terminated (Lines 10-11). If
one of the lower bounds is larger than the current best
score opt, this branch is terminated. We can also terminate
this branch when the lower bound d∗ is equal to D(M∪C)
because in this situation there will be no subgraph with a
smaller score compared to the current partial solution. Then,
we find the exclusion set to generate branches (Lines 12-16).
As each pair of edges in S does not coexist in the subgraphs
with a smaller score, we could directly remove S from C if
e∈S is added into M and generate branches (Lines 17-20).
Finally, we remove S from C to generate a possible branch
(Lines 21-23). Note that the number of branches produced
by this algorithm can be more than 2. All such generated
candidate subgraphs are shrunk at least one edge compared
to the partial solution M∪C . Thus, we could reach the
optimal solution sooner.

Algorithm 7: AdvancedShrink
Input: Chosen edge M , candidate C , queue.

1 C←candidate edge reduction;
2 if C=∅ then
3 return;

4 if C is changed then
5 H←get connected k-truss containing M from

M∪C ;
6 if q ̸⊆V (H) then
7 return;

8 if D(H)<d∗ or D(H)=d∗∧|E(H)|>|opt| then
9 update opt=H , d∗=D(H);

10 if d∗>d∗ or d∗=D(M∪C) then
11 return;

12 S←Sd∗(M∪C);
13 if S=∅ and D(M ∪ C)=d∗ then
14 S←S′

d∗ (M∪C);

15 if S=∅ then
16 S←select an edge from C ;

17 for e∈S do
18 H←get connected k-truss containing M∪{e}

from M∪{e}∪(C\S);
19 if H ̸=∅ and q⊆V (H) then
20 queue.insert(M∪{e}, E(H)\(M∪{e}));

21 H←get connected k-truss containing M from
M∪(C\S);

22 if H ̸=∅ and q⊆V (H) then
23 queue.insert(M , E(H)\M );

Complexity Analysis. Algorithm 7 first finds the re-
movable edges from the current solution, which needs
O(|M ∪ C|1.5+ | M || C |) time. Then it computes
the dissimilarity score to update the current best solution,
which costs O(|M ∪ C|2). Computing the lower bound
needs O(|L[k]||M |+ℓ|C|1.5) time and computing the ex-
clusion set needs O(| C |2| M |+|C|2|Sd(M∪C)|) time.
Finally to obtain the branches, Algorithm 7 costs O((| S |
+1)|M ∪ C|1.5)) time. Thus, the total time complexity of
Algorithm 7 is O(|M ∪ C|2+|L[k]||M ′|+ℓ|C ′|1.5+| C |2|
M |+|C|2|Sd(M∪C)|+(| S | +1)|M ∪ C|1.5)).

Let T be the set of all branches that are
enumerated in the Algorithm 3. Algorithm 3 costs∑

(Mi,Ci)∈T |Mi ∪ Ci|2+ | L[k] ||M ′
i | +ℓi|C ′

i|
1.5

+

| Ci |2|Mi | + | Ci |2| Sd(Mi ∪ Ci) | +(| Si | +1)|Mi ∪ Ci|1.5)
time.

4.3 The 2-Approximation Solution
As the EACS problem is NP-hard, the exact algorithm
proposed has exponential time in the worst case unless
P=NP. Here, we present two 2-approximation algorithms
that can run in polynomial times. They are inspired by
Algorithm 4 and Algorithm 5 (Lines 8-17). In Algorithm
4 GreedyUpperBound, we could treat the subgraph H ′

with D(H ′)=d̄ as the final result. Note that Algorithm 4
not only provides an upper bound of the optimal score
but also achieves 2-approximation of the optimal score (See
Lemma 2). Furthermore, we note that we only need H ′
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as the returning approximate result, and hence Line 13 is
omitted.

Theorem 2. Algorithm 4 discovers a 2-approximation solu-
tion for the EACS problem.

Proof: Let H∗ be the optimal solution, and H be the
community found by Algorithm 4. As the edge dissimilarity
score satisfies the property of triangular inequality, i.e.,
d(ei, ej)≤d(ei, el)+d(ej , el). Thus, we have

D(H) ≤ 2arg min
eqj∈EH(q)

(arg max
ei∈E(H)

d(ei, eqj ))

where EH(q) contain edges that are adjacent to the query
vertex q and EH(q)⊆E(H). Furthermore, we have

arg min
eqj∈E(q)

(arg max
ei∈E(H)

d(ei, eqj ))

≤ arg max
ei′∈E(H∗),eq

j′
∈EH∗ (q)

d(ei′ , eqj′ )

Otherwise, H can continue shrinking in Algorithm 4.
Due to arg maxei′∈E(H∗),eq

j′
∈EH∗ (q)d(ei′ , eqj′ )≤D(H∗),

we have

D(H) ≤ 2arg min
eqj∈EH(q)

(arg max
ei∈E(H)

d(ei, eqj ))

≤ 2arg max
ei′∈E(H∗),eq

j′
∈EH∗ (q)

d(ei′ , eqj′ ) ≤ 2D(H∗)

Algorithm 4 finds the community by global greedy
peeling edges. When the dissimilarity score among edges
is diverse and the final result has a small dissimilarity
score, the number of iterations l will be large, leading to
low efficiency. Besides, if the initial k-truss is large, it will
incur a high cost in verifying the k-truss. To address this
issue, we present another algorithm, called LocalExpand.
Like Algorithm 5 (Lines 8-16), this algorithm finds the
community by iteratively adding edges. The pseudo-code
of LocalExpand is shown in Algorithm 8. For each chosen
edge eq , we iteratively increase d′ to include more edges that
could induce a connected k-truss (Lines 6-16). We also use
(k, d) to prune irrelevant edges (Line 4). We also note that
LocalExpand could also be used to find an upper bound for
the optimal solution, i.e., d̄=D(H).

Theorem 3. Algorithm 8 discovers a 2-approximation solu-
tion for the EACS problem.

Proof: The proof is similar to the proof of Theorem 2.

Complexity Analysis. Let H be the returned subgraph.
In each iteration of the while loop, Algorithm 8 costs at
most O(| E(H) |1.5) time to determines whether there is
a connected k-truss that contains q. Let l′ be the num-
ber of iterations in the while loop. Algorithm 8 costs
O(|E(G)|1.5+deg(q)(l′|E(H)|1.5)) time.
Comparing Two Approximation Algorithms. Algorithm 4
iteratively removes edges from a global range, while Algo-
rithm 8 finds the community by local expanding. When the
dissimilarity score among edges is diverse and the k-truss
is large, Algorithm 8 may be preferable. We will empirically
evaluate these two algorithms in the experiment section.

Algorithm 8: LocalExpand
Input: Graph G, integer k, a query vertex q.
Output: A connected k-truss H with small D(H).

1 Let Hk be the k-truss of G containing q;
2 d=1, H←∅;
3 for each eq is adjacent to q do
4 S=∅; Hk←(k, 2d)-truss;
5 d′←arg mine∈E(Hk)\Sd(e, eq);
6 while true do
7 if d<d′ then
8 break;

9 S={e|d(e, eq) ≤d, ∀e∈E(Hk)};
10 H ′← connected k-truss containing q induced

by S;
11 if H ′ ̸=∅ then
12 if d′<d or d′=d and | E(H) |<| E(H ′) |

then
13 H=H ′; d=d′;

14 break;

15 else
16 d′←arg mine∈E(Hk)\Sd(e, eq);

17 return H ;

5 EXPERIMENTS

In this section, we evaluate the proposed edge-attributed
community models and algorithms.

5.1 Experimental Setup

Datasets. We use seven real-life edge-attributed graphs
in our experiments. ACM and DBLP are co-authorship
networks, where each edge indicates the co-authorship
between two authors. The edge attributes are about the
topic of the corresponding papers. We generate 3 graphs
from three years for ACM and DBLP respectively. For the
edge attribute, we get the stemmed words and remove
the stop words and meaningless keywords. According to
the method [28], we generate the ground-truth commu-
nities based on the journals or conferences in which the
authors publish their papers. We consider the connected
authors that have published papers in the same journal
or conference as a community. The IMDB is a movie co-
operative network. We consider the words in the title and
the genres to which the movie belongs to as the edge
attributes. And we generate ground-truth communities by
considering the actors in the same movie. We also gener-
ate three synthetic datasets, including Facebook, Amazon,
YouTube. Amazon and YouTube can be found in SNAP
(http://snap.stanford.edu/data/). The Facebook dataset is
from [29]. These datasets have ground truth communities,
but they have no edge attributes. To generate edge at-
tributes, we first generate 1000 edge attributes. Then we
randomly select 7 attributes and assign each of these at-
tributes to edges in each ground-truth community. To model
noise in the data, we randomly select a random integer in
[1, 7] attributes for each edge that is not in the ground-truth
community. Table 3 shows the statistics of the ten edge-
attributed graphs.
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TABLE 3: Dataset statistics.
Data Set |V| |E| |Attributes| kmax

ACM-1 57,152 110,991 8491 22
ACM-2 164,667 373,465 12,927 54
ACM-3 190,667 435,452 13,961 51
DBLP-1 341,625 934,159 18,097 57
DBLP-2 358,859 1,013,306 18,520 64
DBLP-3 376,291 1,097,535 18,562 101
IMDB 396,672 1,773,103 91,060 29

Facebook 3,622 72,964 1000 96
Amazon 334,863 925,872 1000 7
YouTube 1,134,890 2,987,624 1000 19

Algorithms. We compare the closest competitors, ETruss
and ATruss [21], which search communities in graphs with
vertex attributes. To apply ETruss and ATruss, we convert
the edge-attributed graphs to vertex-attributed graphs us-
ing two methods mentioned in Section 1, which are re-
spectively referred to as ETruss(Vertex), ATruss(Vertex) and
ETruss(Line), ATruss(Line). We also compare our algorithms
with the KTruss [27] that only considers the graph struc-
tures. As ACM-1, ACM-2, ACM-3, DBLP-1, DBLP-2, and
DBLP-3 are related to the heterogeneous graph, we also
compare the methods that are proposed for community
search in heterogeneous graphs, including FastBCore [30],
BatchECore [30], BatchVCore [30]. We evaluate various ver-
sions of our proposed algorithms, and we summarize all the
algorithms as follows.

• ETruss(Vertex): the exact method in [21] by shifting
edge attributes to vertices.

• ATruss(Vertex): the approximation method in [21] by
shifting edge attributes to vertices.

• ETruss(Line): the exact method in [21] by convert-
ing the input edge-attributed graph to its vertex-
attributed line graphs.

• ATruss(Line): the approximation method in [21] by
converting the input edge-attributed graph to its
vertex-attributed line graphs.

• KTruss: the model in [27] only consider the link
structure.

• FastBCore, BatchECore, BatchVCore: the basic
(k,P)-core model, edge-disjoint (k,P)-core model,
the vertex-disjoint (k,P)-core model in [30].

• BasExact: our proposed Algorithm 1 (Section 3).
• AdvExact-G: our proposed advanced solution in Sec-

tion 4.
• AdvExact-L: our proposed advanced solution in Sec-

tion 4 and the upper bound computation is replaced
by Algorithm 8

• AGlobal: our proposed approximation GlobalShrink
algorithm (Section 4).

• ALocal: our proposed approximation LocalExpand
algorithm (Section 4).

We also compare various version of AdvExact-L algo-
rithm without employing certain pruning techniques, as
follows.

• AdvExact-L-NoP: the AdvExact-L without (k, d)-
truss pruning.

• AdvExact-L-NoC: the AdvExact-L without candidate
reduction.

• AdvExact-L-NoL: the AdvExact-L without lower
bounds.

• AdvExact-L-NoES: the AdvExact-L without edge se-
lection rule.

• AdvExact-L-NoLem7: the AdvExact-L without using
the Lemma 7.

Queries and Parameters. We evaluate our model and al-
gorithms by varying the parameter k and its default value
is 4. We randomly selected 100 queries from ground-truth
communities and each query exists in at least one 4-truss.
Note that we set the time limit as 1000s.
Evaluation Environment. We implement all the algorithms
in Java and run experiments on a machine having an Intel(R)
Xeon(R) 1.90GHz CPU and 24GB of memory.

5.2 Model Evaluation
Metrics. To evaluate the effectiveness of our model
and our algorithms, we use the F1-score. In par-
ticular, let H be the found community and H ′

be the ground-truth community, then F1(H,H ′) =
2precision(H,H′)recall(H,H′)
precision(H,H′)+recall(H,H′) , where precision(H,H ′) =
|V (H)∩V (H′)|

|V (H)| , recall(H,H ′) = |V (H)∩V (H′)|
|V (H′)| . Here, we com-

pare ten algorithms: KTruss, ETruss(Vertex), ATruss(Vertex),
ETruss(Line) ATruss(Line), FastBCore, BatchECore, BatchV-
Core, ALocal, and AdvExact-L.
Evaluation. Figure 4 reports the F1-scores on all datasets
with various k’s. Note that on all DBLP datasets, IMDB,
Amazon and YouTube, the line graph is out of memory;
hence, the results of ETruss(Line) and ATruss(Line) are not
reported. The ETruss(Vertex) and ETruss(Line) have lower
F1-scores compared with ATruss(Vertex) and ATruss(Line).
This is because most query tasks are not completed in 1000s.
FastBCore, BatchECore, and BatchVCore are the methods
that are proposed for community search in the heteroge-
neous graph. We use the author-paper-author as the meta-
path to search the community containing the given author.
Our algorithms ALocal and AdvExact-L achieve the highest
F1-scores in most cases when k is small. Besides, we also
see that the results of the ALocal are similar to AdvExact-L,
which shows that our approximation algorithm could obtain
communities with quality similar to the exact algorithms.
With the increase of k, the F1-scores of all algorithms de-
crease. This is because when k is large, many edges that
do not meet the requirements of k-truss are deleted, which
leads to only part of ground-truth communities can be
found. Figure 5 shows the average community size returned
by all algorithms on all datasets with various k’s. Note that
when the size is 0, the result is not reported. On YouTube,
ETruss(Vertex) can not complete most query tasks in 1000s.
Thus, the results of ETruss(Vertex) are lower than the results
of other algorithms. Since when converting the graph to
the line graph, the graph becomes very dense, and the
ETruss(Line) and ATruss(Line) always return the commu-
nity with many vertices. We can see that our proposed
algorithms always return the community with a small size.
This demonstrates that our method can filter more vertices.
In Figure 6, we show the ratio of queries that return no
empty communities. We can see that the ratio decreases
with the increase of k. This is because when k is large, some
queries may not exist in one k-truss.
Case Study. Figure 7 shows one result of querying the ACM-
2 and Facebook. The red nodes are the query nodes. The
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Fig. 4: F1-score with varying k.
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Fig. 5: Average community size evaluation with varying k.

blue nodes are the nodes that exist in the ground-truth
community (Figure 7 (a) and (d)), the community returned
by ATruss(Vertex) (Figure 7 (b) and (e)), and the community
returned by ALocal (Figure 7 (c) and (f)), respectively. Since
KTruss and ATruss(Line) return a community with too many
nodes to show, we do not give the case studies for the two
algorithms. We can see that the ATruss(Vertex) could not
find all the nodes in ground-truth communities, while our
method can discover the community that is similar to the
ground-truth community. This is because when converting
the edge attributes to the node attributes, the ATruss(Vertex)
cannot capture real relationships between attributes and
edges.

5.3 Efficiency Evaluation

In this section, we evaluate the running times of our pro-
posed algorithms. We also investigate the index construction
time and memory cost.
Efficiency on Different Algorithms for EACS. We
compare the efficiency of AdvExact-L, ALocal, KTruss,
ETruss(Vertex), ATruss(Vertex), ETruss(Line), ATruss(Line),
FastBCore, BatchECore, and BatchVCore in Figure 8. As

on all DBLP datasets, IMDB, Amazon and YouTube,
ETruss(Line) and ATruss(Line) run out of memory, their re-
sults are not reported. In Figure 8, we can see that AdvExact-
L, ALocal and KTruss always outperform ETruss or ATruss
algorithms. Our algorithms are faster than ETruss or ATruss
because we incorporate delicate (k, d)-truss structures and
pruning techniques. Since KTruss, FastBCore, BatchECore,
and BatchVCore do not consider the edge similarity, their
efficiency is high. The running times of AdvExact-L and
ALocal decrease with k because a larger k leads to a smaller
search space. But for Exact-A-L, in certain cases, even if the
search space is narrowed, the computation of the different
pruning techniques will also lead to the search time increas-
ing. Thus, the search time may increase when k increases
(e.g., in Figure 8 (e) from k=8 to k=12). Considering that
AdvExact-L and ALocal extract higher-quality communities
compared with KTruss, overall our algorithms provide bet-
ter efficacy.
Efficiency of Different Techniques. We compare the effi-
ciency of AdvExact-L, AdvExact-L-NoP, AdvExact-L-NoC,
AdvExact-L-NoL, AdvExact-L-NoES, AdvExact-L-NoLem7,
Exact-B on different datasets to evaluate different techniques
in Figure 9. Note that Exact-B and AdvExact-L-NoP run out
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Fig. 6: Ratio of no empty queries with varying k.

(a) ground-truth
community(ACM-2)

(b)
Atruss(Vertex)(ACM-
2)

(c) ALocal(ACM-2)

(d) ground-truth com-
munity(Facebook)

(e)
Atruss(Vertex)(Facebook)

(f) ALocal(Facebook)

Fig. 7: Case study.

of memory on YouTube, their results are not reported. We
observe that AdvExact-L significantly outperforms Exact-
B. Besides, different techniques lead to various effects. In
most cases, when removing any technique, the running time
increases. It is worth noting that the (k, d)-truss pruning rule
has the greatest impact on efficiency. Note that if the (k, d)-
truss pruning is not used, the candidate reduction and edge
selection rules need much time to find the corresponding
set, which will lead to the AdvExact-L-NoP being slower
than the Exact-B.

Efficiency of Exact Algorithms and Approximation Algo-
rithms. Figure 10 reports the running time of our proposed
two approximation algorithms and our advanced exact solu-
tions based on different upper-bound computations. In most
cases, the ALocal runs faster than AGlobal, AdvExact-L is
faster than AdvExact-G. This demonstrates the effectiveness
of the local expansion in Algorithm 8.

Index Construction Time and Index Size. We show the
index construction time and index size in Figure 11. With
the increase in the graph size, the running time and memory
usage also increased. However, the index construction for
all datasets can be finished within 1 hour and the index size
is within 250M, demonstrating that the indexing scheme is
practically affordable.

5.4 Discussion
EACS employs the classic k-truss model to capture the
structural cohesiveness. The k-truss model relaxes the clique
model and enhances the k-core model. Besides, it captures
the cohesiveness in communities by utilizing the triangle,
which usually implies strong relationships in communities
[19]. Our model also has these nice properties of the k-
truss model. On the other hand, EACS model is somewhat
affected by the limitations inherent to the k-truss model.
For example, if k is set to large, to satisfy the cohesive-
ness constraint, many weak edges will be removed such
that some qualified vertices may be thus removed from
the community. In our model, k is set small. Moreover,
to resist some unqualified vertices from mixing into the
community due to the small k, we exploit the similarity
of edge attributes to get a refined community by removing
the edges that are not similar to each other. Intuitively, the
community with similar edge attributes is generally firm.
Thus, our proposed model could alleviate the influence
of weak edge removal since it considers the cohesiveness
constraint and similarity of edge attributes at the same time.
We have done experiments on a wide range of datasets,
which have different numbers of edges (3622∼1134890),
vertices (72964∼2987624), edge attributes (1000∼91060),
and kmax values (7∼101). From Figure 4 in Section 5.2, we
have a general observation across all datasets that when k
is small (i.e., k = 3 or 4), the query returns an effective
community with a higher F1 score, while the effectiveness
of the communities decreases as k increases. Therefore, we
recommend that users set k to 3 or 4 when using our model.

6 RELATED WORK

Community detection. Community detection has been
widely studied in the last decade. Most works often mainly
by exploring link structure to find cohesively interaction
groups. However, in the real networks, there exists much
information that could be used to help capture meaningful
communities, such as vertex attributes [10], [11], [12], [31],
timestamp [32], [33], direction [34] etc. Qi et al. [4] first
propose exploiting the edge content to find communities
with similar edge content. And they show that edge con-
tent could greatly improve the effectiveness of community
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Fig. 8: Efficiency of different algorithms for EACS.
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Fig. 9: Efficiency of different techniques.
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Fig. 10: Efficiency of exact algorithms and approximation algorithms.
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detection. After that, Wang et al. [7] developed methods to
discover topically meaningful communities in the networks
with node and edge content. More recently, Amburg et
al. [6] find the community with categorical edge labels. In
general, community detection always finds all communities
by exploring a global criterion; hence, it is inefficient to
adapt the methods above mentioned for our EACS problem.
Community search. Community search aims to discover
a densely connected group that contains query vertices,
which has attracted much attention in recent years. To
capture the cohesive structure, different models have been
developed, including k-core [15], [17], k-truss [16], [18], k-
clique [35], density modularity [36], etc. However, all these
works only focus on the link structure of the community.
Recently, some works have been developed for more com-
plex networks such as location-based networks [37], [38],
[39], heterogeneous networks [30], [40], temporal networks
[41]. The most similar problem to EACS is the community
search in vertex-attributed networks, such as [1], [21], [22],
[42]. The difference between our work and [1], [42] is that
they require to take both vertices and attributes as query
input and find the community containing query vertices and
similar vertex attributes within it. There are also works that
only take attributes [22] or vertices [21] as input, and in our
experiments, we have systematically compared with [21].
There is one work [43] that does not take attributes as query
input, but their work is based on k-core and they need
two user-specified parameters, k and r, to be set, while our
model only requires one parameter k. Fewer parameters can
reduce the burden on the users. Lastly, we note that Kang
et al. [5] proposed community search in edge-attributed
networks, but they require users to input appropriate query
keywords, which is not an easy task for users.

7 CONCLUSION

In this paper, we focused on the edge-attributed community
search problem (EACS) that allows finding a community
containing query vertex with cohesive structure and homo-
geneous edge attributes. We proved that this problem is NP-
hard. We first proposed a basic exact solution by enumerat-
ing all possible k-truss. To quickly find the communities,
several nontrivial techniques are proposed, including (k,
d)-truss pruning, candidate reduction, the lower bounds-
based early termination, and the edge selection-based search
space partition. In addition, we also proposed two efficient
approximation algorithms with an approximation ratio of 2.
Extensive experiments demonstrated the effectiveness and
efficiency of our model and algorithms.
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