
COCLEP: Contrastive Learning-based
Semi-Supervised Community Search

Ling Li1,2, Siqiang Luo2∗, Yuhai Zhao1∗, Caihua Shan3, Zhengkui Wang4, Lu Qin5
1Northeastern University, China, 2Nanyang Technological University, Singapore, 3Microsoft Research Asia,

4Singapore Institute of Technology, Singapore, 5University of Technology Sydney, Sydney
lilingneu@gmail.com, siqiang.luo@ntu.edu.sg, zhaoyuhai@mail.neu.edu.cn,

caihuashan@microsoft.com, zhengkui.wang@singaporetech.edu.sg, lu.qin@uts.edu.au

Abstract—Community search is a fundamental graph process-
ing task that aims to find a community containing the given
query node. Recent studies show that machine learning (ML)-
based community search can return higher-quality communities
than the classic methods such as k-core and k-truss. However,
the state-of-the-art ML-based models require a large number
of labeled data (i.e., nodes in ground-truth communities) for
training that are difficult to obtain in real applications, and incur
unaffordable memory costs or query time for large datasets. To
address these issues, in this paper, we present the community
search based on contrastive learning with partition, namely
COCLEP, which only requires a few labels and is both memory
and query efficient. In particular, given a small collection of
query nodes and a few (e.g., three) corresponding ground-truth
community nodes for each query, COCLEP learns a query-
dependent model through the proposed graph neural network
and the designed label-aware contrastive learner. The former
perceives query node information, low-order neighborhood in-
formation, and high-order hypergraph structure information, the
latter contrasts low-order intra-view, high-order intra-view, and
low-high-order inter-view representations of the nodes. Further,
we theoretically prove that COCLEP can be scalable to large
datasets with the min-cut over the graph. To the best of our
knowledge, this is the first attempt to adopt contrastive learning
for community search task that is nontrivial. Extensive experi-
ments on real-world datasets show that COCLEP simultaneously
achieves better community effectiveness and comparably high
query efficiency while using fewer labels compared with the-
state-of-the-art approaches and is scalable for large datasets.

I. INTRODUCTION

Community search aims to extract a cohesive subgraph (or
a community) containing a query node, and is widely used
in various applications, such as event organization, friend
recommendation, fraud detection, targeted advertisement [1],
[2]. Much research has been devoted on community search
algorithms (e.g., [3]–[8]).

The conventional community search methods often define a
community based on an explicit structural requirement (e.g.,
k-core [3], [7], k-truss [4], [6], [9], and k-ecc [5], [10]),
and try to capture different aspects of the cohesiveness of
the community. For instance, a k-core is a dense subgraph
such that each node connects to at least k other nodes. k-
truss requires that each edge in the subgraph is contained
in at least k-2 triangles. k-ecc is a subgraph such that after
removing any k−1 edges, it is still connected. However, such

∗ Corresponding Author

K-Core[3]
K-Truss[6]

K-ECC[5]

QD-GNN[14]
COCLEP(Ours)

Query Time

Number of labels

Effectiveness

classic methods: moderate effectiveness
ML-based methods: high effectiveness

Fig. 1: COCLEP better complements with existing methods
in terms of community effectiveness, query efficiency and the
number of labels required.

a predefined structure can be inflexible in real applications, as
the community structures may vary significantly in different
types of networks.

Therefore, the recent research works have proposed the
machine learning (ML)-based community search methods,
i.e., ICS-GNN [11] and QD-GNN [12] on the attributed
graphs that are flexible to handle any community structures,
to overcome the limitations of conventional methods. Given
some ground-truth communities, these approaches aim to learn
a model that finds a suitable community for any given query
node. For instance, ICS-GNN trains a model for each query
task with the given positive and negative labels. QD-GNN
uses the training dataset that contains the query nodes and
the corresponding ground-truth community to train a model.
Though existing ML-based community search methods have
shown very promising results on the task, they still suffer
from several limitations. (1) They heavily rely on a large
number of labeled data to train the model. Particularly, QD-
GNN requires to know the whole community (hence, many
labels) for the query nodes in the training dataset. ICS-GNN
needs to know both positive and negative pairs for every node
in the graph, where the positive pairs refer to two nodes in
the same community. Unfortunately, in many real applications,
such a large number of labeled data may not be available. (2)
They incur significant memory costs or query time for large
datasets. Particularly, QD-GNN needs to train the model from
the whole graph, which easily leads to out of memory for
large graphs. Although ICS-GNN is scale for large network
w.r.t. the memory usage, it suffers from slow query processing,
as it needs to retrain the model for each query node. Therefore,
this calls for a memory and query efficient ML-based method
that does not require the large number of labeled data for
community search.

In this paper, we make the first attempt to adopt the
contrastive learning in the community search tasks. Contrastive

learning has been widely used in other tasks for graph repre-
sentation learning [13]–[15] as it has shown a great potential
of using no or only a few labels for model training. But
it has never been explored in community search. In order
to take advantage of contrastive learning, we foresee three
main challenges of introducing contrastive learning into the
community search tasks.

(1) How to encode the nodes and community information?
Community search is a query-driven task that aims to discover
the community containing the query node. However, the exist-
ing contrastive learning methods usually learn representations
for all nodes equally, instead of being query-driven. The
problem arises in how to encode the query node and the
corresponding labeled nodes. Furthermore, positive pairs and
negative pairs in classic contrastive learning do not carry the
community information. Hence, we need to expand the scope
of designing positive pairs and negative pairs to mediate the
community information.

(2) How to generate an augmentation view for community
search in a graph? Contrastive learning includes an augmen-
tation view as a crucial component. The augmentation view is
a modified graph transformed from the original graph without
affecting the semantics for downstream tasks. It can be seen
as the supervision information for model training. Existing
methods for graph data augmentation include random node
dropping, edge perturbation, attribute masking, and subgraph
sampling [14]. However, these methods are at risk of damaging
the semantics of the generated graph for community search.
For instance, the inherent community properties (e.g., density)
may be heavily changed. Additionally, these methods do not
carry neighborhood information, which is helpful for commu-
nity information capturing. For example, most neighbors of
a node are located in the community containing this node.
Therefore, we need new designs of the augmentation view for
community search.

(3) How to alleviate the memory and time costs? Existing
contrastive learning methods train a model from the entire
graph, which leads to high memory and time costs. However,
for the community search task, the nodes in the community are
usually located around the query node. The nodes located far
from the query nodes will not contribute to the model training.
Thus, training based on an entire graph is often not necessary.
Exploring efficient training methods can significantly reduce
memory and time costs.
Our Approach. To address these challenges, we propose
COCLEP (Community search based on Contrastive Learning
with Partition) with several novel designs. Before propos-
ing the COCLEP, we develop the COCLE, which is the
Community search based on Contrastive Learning without
partition. First, we propose a new attention-driven graph neural
network to encode the nodes into low-dimensional vectors.
Being effective in integrating the neighboring information into
a node and fusing the query node information and structure
information, the attention-driven graph neural network brings
benefits in learning the set of community nodes that share
similar features to the query node. Second, to capture the
community information, the label-aware contrastive learner,

including intra-view and inter-view learning is proposed.
Third, we design the augmentation view in contrastive learning
as a hypergraph, which is then encoded by the attention-
driven hypergraph neural network to capture the higher-order
structure of the neighborhood information. Finally, to reduce
the model training memory cost, COCLEP partitions the
graph first and rejoins the community results in each partition.
We theoretically analyze why the partition is reasonable. Our
analysis also shows that the training memory and time costs
are geared to the partition size instead of the whole graph size.

It is important to note that we do not aim to completely
replace classic non-ML-based community search models with
ML-based methods. Our main purpose is to explore the
potential novelty of the ML-based community search, which
complements the decade-old but still powerful classic methods
and, arguably, continues the new research direction for ML-
based community search opened by recent studies [11], [12].
Figure 1 shows a general comparison between the classic
methods and ML-based methods, including COCLEP. One
important benefit of the classic methods is that it requires no
ground-truth knowledge (i.e., labels), whereas the ML-based
methods (e.g., QD-GNN and ICS-GNN) excel in community
effectiveness at the expense of using ground-truth commu-
nities. When ground-truth communities are available (e.g.,
see many datasets in [16]), the ML-based methods can be
preferred for their high effectiveness. Further, we argue that
the burden on obtaining the ground-truth labels can be further
lifted by our COCLEP, which requires much fewer labels
(e.g., 3) while maintaining high community effectiveness.
In summary, COCLEP takes the advantages of both the
conventional methods (no prior-knowledge required) and the
ML-based methods (high effectiveness).
Contributions. Our contributions are summarized as follows:
• We present a contrastive learning-based semi-supervised
model for community search in a graph, namely COCLEP,
which is both memory and query efficient requiring very few
labeled data. To the best of our knowledge, this is the first
work to introduce contrastive learning in community search.
• We propose the COCLE that includes a new label-aware
contrastive learner, where a hypergraph-based augmentation
method and a contrastive learning strategy that integrates low-
order intra-view learning, high-order intra-view learning and
low-high-order inter-view learning are proposed. Further, we
design a new attention-driven graph neural network as well as
its combination with graph partitioning (COCLEP).
• We conduct extensive experiments on real networks and
the results demonstrate that our proposed models achieve
significantly better performance w.r.t. the query efficiency,
training time, community effectiveness, and the requirement
of labeled data.

II. RELATED WORK
Community Search. Community search has been extensively
studied in recent years. It aims to find densely connected
subgraphs containing query nodes. To capture the cohesive
structure, different models have been proposed, including k-
core [3], [7], [17], k-truss [4], [6], [9], k-ecc [5], [10]. See
[1] for a survey. Besides simple graphs, community search is

also studied in more complex graphs like geo-social networks
[18]–[22], attributed networks [23]–[25], heterogeneous infor-
mation networks [26], [27], bipartite graphs [28]. However,
such predefined structure-based community search methods
are inflexible. Recently, some ML-based methods have been
proposed to solve this limitation. Gao et al. [11] first studied
community search based on graph neural networks. They
see the community search problem as a binary classification
problem. But their model is a query-specific model. Once a
new query comes in, they need to relearn a new model for
the new query, which is time-consuming. Besides, for each
query, they need the labeled data with incremental provided. In
reality, it is impossible for users to easily provide labels for all
queries. Jiang et al. [12] proposed QD-GNN and AQD-GNN
to solve community search problem on simple graphs and
attributed graphs, respectively. They also see the community
search problem as a binary classification problem.
Contrastive Learning. Contrastive learning has been widely
used in computer vision [29], [30], natural language [31], [32]
and the graph domain [13]–[15], [33]–[35]. It sees the data
themselves as supervision information without labels to make
similar samples closer and dissimilar samples far from each
other. To generate similar samples, different data augmentation
methods have been proposed. For example, Qiu et al. [13]
use the random walk within the same k-hop subgraphs to
generate similar samples. You et al. [14] study different graph
augmentation methods, such as node dropping, edge pertur-
bation, attribute masking, and random walk induces subgraph.
Zhu et al. [33] proposed adaptive augmentation by considering
the important nodes in the graph. All these methods do not
consider the label information, causing similar samples in the
graph being seen as dissimilar samples, further influencing
the performance. To solve this problem, some works [35],
[36] proposed supervised contrastive learning with labeled
data. But all the existing approaches are focused on node
representation learning, link prediction, and node classification
tasks. They cannot be directly applied to the community search
task since it is a query-dependent task. Recently, Wang et
al. [37] proposed a contrastive loss that directly optimizes
alignment and uniformity of the node features and leads to
comparable or better performance.

III. PROBLEM DEFINITION

We focus on an undirected graph G(V,E) with node set
V and edge set E. Let n = | V | and m = | E | be the
number of nodes and edges respectively. Given a node u∈V ,
the neighbor set of u is N(u)={v|(u, v)∈E or (v, u)∈E}. The
adjacency matrix of G is denoted as A∈{(0, 1)n×n}, Ai,j = 1
iff (vi, vj)∈E.
Community Search: Given a graph G and a query node
q, community search aims to find a cohesively connected
subgraph containing q. Here, we use the set of nodes Cq in
the subgraph to denote the community to which q belongs.

Based on the definition of community search, we formulate
our ML-based community search problem: given a graph G
and a set of query tasks with (community) labeled nodes, i.e.,
D={(q1, pos(q1)), (q2, pos(q2)), . . . }, where qi is the query

TABLE I: Frequently used notations.
Notation Meaning
G(V,E) the input graph.

Gaug(Vaug, Eaug) the augmentation graph of graph G.
n, m the number of nodes and edges in G.
N(u) the set of neighbors of u in G.
Cq(G) the community containing q in graph G.

pos(q,G) the nodes in ground-truth community Cq .
L total number of GNN layers.

h
(l)
u , zzz(l)u the representation of node u in G and Gaug

in the l-th layer, respectively.
δ the activation function.
D the training dataset.

Ĉb
qi the boundary of one partition.

𝑣𝑣10

𝑣𝑣13𝑣𝑣7

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3
𝑣𝑣4 𝑣𝑣5

𝑣𝑣6

𝑣𝑣11
𝑣𝑣12

𝑣𝑣14

𝑣𝑣9

𝑣𝑣8
𝑣𝑣10 : 0.3

𝑣𝑣1: 0.1

𝑣𝑣2: 0.1

𝑣𝑣3 : 0.1

𝑣𝑣4 : 0.2
𝑣𝑣5 : 0.3

𝑣𝑣6 : 0.4

𝑣𝑣8 : 0.1

𝑣𝑣12 : 0.7

𝑣𝑣14 : 0.8

𝑣𝑣11: 0.3
ℱ(𝑣𝑣13, 𝑣𝑣)

𝑣𝑣7 : 0.3 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛
𝑣𝑣13

Fig. 2: An example of ML-based community search.

node and pos(qi) ⊆ Cqi is the set of positive samples with
respect to query node qi. We aim to build a machine learning
model that can learn a function F(q, v)∈R that outputs the
probability of node v∈V belonging to Cq . Note that we aim to
learn a model that benefits various queries in the same graph.
The underlying assumption is that there exists one common
structural pattern that composes the community for different
queries in a graph. Given a new query node qnew, once the
probabilities F(qnew, v) for all nodes are obtained, we can find
the community Cqnew

that is composed by the nodes whose
probability are higher than the given threshold p.
Example. Figure 2 shows an example for ML-based
community search. Given the graph G, the nodes of
a ground-truth community are marked by different col-
ors. For example, Cv7={v1, v2, v3, v4, v5, v6}. Then the
set pos(v7) can be {v1, v2, v3} which is a subset of
Cv7 ; the set pos(v10) can be {v8, v9, v11}. The train-
ing dataset D is composed by these pairs of tasks, i.e.,
D={(v7, (v1, v2, v3)), (v10, (v8, v9, v11)), ...}. With D, we aim
to learn the function F that could infer the community for
any query node qnew. Suppose qnew=v13, as Figure 2 shown,
the probability of all nodes are reported through F . Given
a probability threshold p=0.5, Cv13={v12, v14} because only
v12 and v14 have probabilities that are larger than 0.5.

IV. COCLE: CONTRASTIVE LEARNING-BASED
COMMUNITY SEARCH

Figure 3 gives the overall architecture of COCLE, which
mainly includes three components, i.e., node feature en-
coder, high-order augmentation encoder, and label-aware con-
trastive learner. Given a graph G and the training dataset
D={(q1, pos(q1)), (q2, pos(q2)), . . .}, the node feature en-
coder is used to obtain the representation of each node in
G by fusing the query node information and the lower-order
neighboring information of the node. The high-order augmen-
tation encoder captures the high-order community information
of the nodes from an augmentation hypergraph. The label-
aware contrastive learner obtains the final representations of
the nodes with a carefully designed learning strategy that

Layer (1) …..Layer (2) Layer (L)

Layer (1) …..Layer (2) Layer (L)

Layer (1) …..Layer (2) Layer (L)

shared
Hyperedge
Representation

High-order
intra-view
similarity

Low-high-order
inter-view
similarity

Low-order
intra-view
similarity

MLP
……

𝑛𝑛 × 1

Probability

(q1, pos(q1))
(q2, pos(q2))

……
(q|𝒟𝒟|, pos(q|𝒟𝒟|))

Training dataset

dis h′ q , h′ vi ≪dis h′ q , h′ vj ,

vi∈pos q ,vj∈V\pos(q)

transform

Query
Encoder

Graph
Encoder

Attention
Fuse

Augmentation

𝐺𝐺
𝑣𝑣1

𝑣𝑣3𝑣𝑣2

𝑣𝑣4
𝑣𝑣6𝑣𝑣7𝑣𝑣8

𝑣𝑣5

𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣2 𝑣𝑣3

𝑣𝑣1

𝑣𝑣4
𝑣𝑣5

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

𝑣𝑣4

……

Inter-viewIntra-view

MLP

……
𝑯𝑯:𝑛𝑛 × 𝑑𝑑

Representation

……
𝒁𝒁:𝑛𝑛 × 𝑑𝑑

Representation

……
𝑯𝑯:𝑛𝑛 × 𝑑𝑑

Representation

……
𝑯𝑯′:𝑛𝑛 × 𝑑𝑑

Representation
Query
Encoder

Graph
Encoder

Attention
Fuse

Label-Aware
Contrastive Learner

dis h q , h vi ≪dis h q , h vj ,

vi∈pos q ,vj∈V\pos(q)

High-order encoder

Low-order encoder

Fig. 3: The architecture of COCLE.
enlarges the contrastive scope and incorporates both high-
order and low-order information. Once the model is trained,
we can get a function F(q, v) that maps each node v in G to a
probability that v belongs to the community Cq w.r.t the query
node q. When a new query qnew comes, qnew and all nodes
in G are encoded by COCLE and the representations of all
nodes in G are transformed into the probabilities. All nodes
whose probabilities are above a given threshold are output as
the community of qnew.

To be effective, COCLE considers the challenges (1) and
(2) mentioned in Section I. In particular, the challenge (2)
of the augmentation view generation for community search
is addressed in the high-order augmentation encoder by con-
structing a hypergraph. Since nodes in the same neighbor-
hood form hyperedges and no nodes or edges are randomly
removed, the community information is captured without the
relationships among nodes damaged. For the challenge (1) of
node encoding with community information, the constructed
hypergraph and the community structure are utilized in the
label-aware contrastive learner. As a result, the community
information is integrated into the node encoding and the con-
trastive scope is expanded to intra-view and inter-view from
both low-order and high-order views. Moreover, an attention-
based graph convolutional network is used in the node feature
encoder so that the node encoding is query-driven.

Constrative learning is the core of COCLE. As shown in
Figure 3, it includes intra-view learning and inter-view learn-
ing. To facilitate the understanding of COCLE, we describe
both in detail below.

(1) Intra-view learning. In one view (i.e., G), given the
label information (q, u) where u∈pos(q), and their respective
representations h(q) and h(u), it aims at maximizing the
mutual information between h(q) and h(u). For instance, in
Figure 3, in view G, given q=v1, pos(v1)={v2, v3}, the intra-
view learning makes the distance among these representations
of nodes v1, v2, v3 small. The intra-view learning takes into
account the community information of query nodes, which is
important to boost the effectiveness of the community search.
In addition to the low-order intra-view learning in the original
graph G, to utilize the high-order information, we propose
high-order intra-view learning. It uses the similarity of the
neighborhood structure of nodes to capture the high-order
information. For example, in view Gaug , 1-hop of node v1
and node v2 have similar neighborhood structures.

(2) Inter-view learning. Let h(u) and h′(u) be the represen-
tations of node u in two views G and Gaug , respectively. Note
that here, h(u) and h′(u) are obtained by a shared encoder.

It aims at extracting information across these two views by
exploring two representations, h(u) and h′(u). According to
the general framework of contrastive learning, the represen-
tations h(qi) and h′(qi) of the query node qi compose the
positive pairs. For example, in Figure 3, given q=v1, the blue
nodes v1 in G and the 1-hop set {v1, v2, v3, v4} of v1 in Gaug

compose the positive pairs. If directly applying the previous
contrastive learning method, the community label information
across the views is ignored, outputting representations that
do not carry the community information. Different from the
classic contrastive learning, we extend the scope of positive
pairs by including (p, q), where q ∈ pos(p). Particularly, we
also aim to reduce the distance between h(p) and h′(q). For
instance, in Figure 3, given q=v1, pos(v1)={v2, v3}, the blue
node v1 in G and green nodes {v1, v2, v3} and orange nodes
{v1, v2, v3, v4, v5} in Gaug compose the inter-view learning,
and vice versa.

V. COMPONENTS OF COCLE
A. Node Feature Encoder

As community search is a query-dependent task, for differ-
ent queries, there will be different initial node features and the
model will output specific representations. Since query node
information and structure information have different influences
for community search in different datasets, to effectively uti-
lize the two information, we propose using an attention-based
model to dynamically learn how to fuse the two information
and generate the node representations. Graph Convolutional
Network (GCN) [38] has shown great potential in encoding
structure information. We first use GCN to encode query node
and structure for the original graph G, respectively. Then we
use the graph convolution operator to fuse them by learning
the attention coefficients of the query node and structure.

In a GCN with L layers, its l-th layer receives the features
from the previous layer and updates it by aggregating features
from the neighborhood. The propagation rule is as follows:

H(l+1) = σ(D̂−1/2ÂD̂−1/2H(l)Θ(l)). (1)
Here, Â is the adjacency matrix with self-connections, i.e.,
Â = A + In. D̂ is the degree diagonal matrix with D̂ii =∑

j Âij . Θ(l)∈Rd(l)×d(l+1) as the trainable weight matrix at
the l-th layer, d(l) is the dimension of l-th layer and σ(·)
is the activation function. H(l)∈Rn×d(l) is the hidden node
representation learned by GCN in the l-th layer. H0 is the
initial representation of all nodes.
Selection of H0. To encode the query node, we use the
following definition to initialize the node features, H(0)

q =Xq .
Matrix Xq ∈Rn×1 is composed by xxxq[u], ∀u ∈ V .

xxxq[u] =

{
1, u = q,

0, u ̸= q.
(2)

To encode the structure information of the graph, we use
H

(0)
s =Xs, where Xs∈Rn×d is the feature matrix. In this

paper, we focus on simple undirected graphs without features.
The core number could capture the cohesiveness structure of
the graph, and communities are usually composed of cohe-
sively connected nodes. We use the normalized core number
of all nodes to compose the feature matrix Xs, where the
core number of a node u is the maximum k that a k-core
contains u [23]. If the graph has the original features, we can
simply concatenate the original features and the normalized
core number as the initial feature matrix (i.e. H(0)

s = [F ||Xs],
F is the original feature matrix). Then these two encoders can
be defined as

H(l+1)
q = σ(D̂−1/2ÂD̂−1/2H(l)

q Θ(l)
q),

H(l+1)
s = σ(D̂−1/2ÂD̂−1/2H(l)

s Θ(l)
s).

In each layer of these two encoders, given h
(l)
q (u) and

h
(l)
s (u), we use Eq.(3) to learn the attentions and fuse them.

a
(l)
q and a

(l)
s are the trainable attention vector.

h
(l)
f (u) = τ (l)

q (u)h(l)
q (u) + τ (l)

s (u)h(l)
s (u)

τ (l)
q (u) =

exp((a
(l)
q)Th

(l)
q (u))

exp((a
(l)
q)Th

(l)
q (u)) + exp((a

(l)
s)Th

(l)
s (u))

τ (l)
s (u) =

exp((a
(l)
s)Th

(l)
s (u))

exp((a
(l)
q)Th

(l)
q (u)) + exp((a

(l)
s)Th

(l)
s (u))

.

(3)

In each layer, h
(l)
q (u) and h

(l)
s (u) may have different

influence, we fuse them in each layer and use Eq.(4) to get
the fused representations, where H̄

(0)
q = XqWq+bq, H̄

(0)
s =

XsWs + bs. Wq∈R1×d(0), bq∈Rn×d(0), Ws∈Rd×d(0),
bs∈Rn×d(0) are used to map Xq and Xs with same di-
mension. By doing so, we use the l-layer H

(l)
f as the final

representation. It is also termed as H .
H

(l+1)
f = σ(τ

(l+1)
q H

(l+1)
q + τ

(l+1)
s H

(l+1)
s + D̂−1/2ÂD̂−1/2H

(l)
f Θ

(l)
f)

H
(0)
f = τ

(0)
q H̄

(0)
q + τ

(0)
s H̄

(0)
s .

(4)
Following the existing contrastive learning framework [35],

after obtaining the node level representation H , we use MLP
(Multilayer Perceptron) with one hidden layer to get the
vector space for contrastive learning. Particularly, we use the
following transformation:

H = σ(Hθ1 + b1)θ2 + b2 (5)
where σ(·) denotes the activation function, e.g., ReLU. θ1 and
θ2 are the weight parameter matrices. b1 and b2 are the bias.
B. High-order Augmentation Encoder

Existing augmentation methods are not suitable for commu-
nity search for the following reasons:

(1) The relationships among nodes are important. Randomly
removing nodes or edges will lead to great changes in the
relationships. As shown in Figure 2, if we remove v3 from
the graph, the density of the whole graph is greatly reduced.
If we want to find the community containing v7 in this graph,
nodes {v4, v5, v6} may not be in the community as these
nodes and v7 have lower density. But in the original graph,
these nodes may belong to the community Cv7 since nodes
{v7, v1, v2, v3, v4, v5, v6} compose a dense structure. This
will further affect the performance of the learned model.

(2) More importantly, existing graph augmentation methods
usually do not integrate the high-order graph structure. Similar
to the aforementioned graph convolutional network, existing
methods aggregate for each node the node features of all its 1-
hop neighbors. Since the neighborship is only the relationship
between a pair of nodes, the aggregation in this way can only
capture the low-order information between nodes. Instead, the
hypergraph-based convolutional network aggregates the related
hyperedge features for each node. Each hyperedge corresponds
to a subset of nodes, and essentially represents the overall
relationship of all nodes within the subset. Thus hypergraph
can model the high-order relationships.

To capture the high-order structure information, we propose
a hypergraph-based method that utilizes the idea of neighbor-
hood structure similarity. The underlying assumption is that
the nodes within the same community have similar subgraph
context induced by the same community. To achieve this goal,
we see the neighborhood-induced subgraphs as hyperedges,
exploiting the idea of hypergraph neural network (HGNN) to
learn the representation of subgraphs. It is important to note
that not all the nodes in the neighborhood of a node u have
equal importance as some nodes in the neighborhood may not
be in the community containing u. Thus, we propose using an
attention-based model to fuse the neighborhood information.

A hypergraph is represented by GH(VH, EH,WH), where
VH and EH are the sets of nodes and hyperedges, respectively,
and WH∈R|EH|×|EH| is a diagonal matrix with the hyperedge
weight. Each hyperedge e∈EH is a non-empty subset of VH.
Generally, hypergraph GH can be represented by an incidence
matrix H∈R|VH|×|EH|, where Hi,j=1 if vi∈ej . Then, the
node degree and hyperedge degree are defined as:

Dv
ii =

|EH|∑
j=1

WH(j, j)Hi,j , De
jj =

|VH|∑
i=1

Hi,j . (6)

The diagonal matrices of node and hyperedge degrees are
denoted as Dv , De, respectively.

To construct the hypergraph, we employ a simple yet effec-
tive approach, based on a common observation in community
search that the nodes in the community are generally densely
connected and located around the query node [4], [24], i.e.,
nodes in the community of q are not far away from the query
node q. In particular, for each node in graph G, we search for
the r-hop neighboring nodes rooted at every node, with these
nodes corresponding to a hyperedge. As such, there will be a
total of |V | hyperedges. We use eu to denote the hyperedge
that is constructed for node u.

To encode the nodes in the constructed hypergraph, we
use the existing hypergraph neural network [39], which has
shown better performance than GCN when encoding high-
order relationships in graphs. Given a L-layer HGNN, its l-th
layer receives the features from the previous layer and updates
it by aggregating features from the neighborhood. Here, the
neighbor of a node u is the node that is located in the same
hyperedges as u. The hypergraph convolution is defined as:

Z(l+1) = σ(D−1
v HWHD−1

e HTZ(l)Θ̂(l)), (7)
where ZZZ(l) is the hidden representation in the l-th layer,
σ(·) is the activation function. Θ̂(l) is a trainable pa-
rameter matrix. We also use two HGNN-based encoders

to encode the query node and graph structure, i.e.,
Z

(l+1)
q = σ(D−1

v HWHD−1
e HTZ

(l)
q Θ̂

(l)
q), Z

(l+1)
s =

σ(D−1
v HWHD−1

e HTZ
(l)
s Θ̂

(l)
s), where Z

(0)
q =Xq , Z(0)

s =Xs.
Similarly, we also use above mentioned attention-based
method to fuse Z

(l)
q and Z

(l)
s and get Z(l)

f .
Note that we aim to capture the information of different

high-order structures, and each hyperedge corresponds to a
subgraph. Hence, we need a readout function (it is a function
to get the feature representation of the whole graph by aggre-
gating the node features.) to aggregate the node representations
in each hyperedge. We use node similarity attention to measure
the weight of nodes in each hyperedge. Then, the hyperedge
readout function P(·) is defined as follows:

P(eu) =
∑
v∈eu

βv·z(v), (8)

where eu is the hyperedge that is constructed for node u, and
z(u) is the representation of node u in the last layer of HGNN,
namely Z

(l)
f . βv weighs the importance of each node in the

hyperedge, which is calculated as follows:
βv =

exp(sim(z(u),z(v)))∑
w∈eu

exp(sim(z(u),z(w)))
, (9)

where sim(u, v) denotes the cosine similarity between two
representation vectors u and v, which is defined as follows:

sim(z(u),z(v)) =
z(u)Tz(v)

∥z(u)∥∥z(v)∥ . (10)

The augmentation represetation matrix H ′ is composed by all
hyperedge representation P(eu), ∀u∈V .

Similar to that mentioned earlier, after obtaining H ′, we
use MLP (Multilayer Perceptron) to get the vector space for
contrastive learning. Note that the MLP used here has the same
parameters as the one mentioned above.
C. Label-Aware Contrastive Learner
To capture the information contained in the ground-truth
community, we propose a label-aware contrastive learner,
incorporating the community label information into the con-
trastive loss. In addition to the community information in
each view, the information contained in the data itself (i.e.,
the similarity between the same nodes and similarity between
the query node and its positive samples in different views) is
also helpful for model training. We also add such information
from different views into the contrastive loss. In a nutshell,
we redesign the scope of positive pairs and negative pairs and
the contrastive loss to conduct the contrastive learning, which
includes low-order intra-view, high-order intra-view and low-
high-order inter-view learning.

Given a query task with positive samples (qi, pos(qi)), we
see the query node qi and each node from the positive samples
as the positive pair, while the node qi and other nodes compose
the negative pairs. Then the intra-view contrastive loss in the
original graph view is defined as follows:

Lintra(qi, G) =
1

|pos(qi)|
∑

u∈pos(qi)

I(h(qi),h(u)), (11)

where
I(h(qi),h(u)) = − log

exp(sim(h(qi),h(u))/τ)∑
v∈V exp(sim(h(qi),h(v))/τ)

. (12)

I(h(qi),h(u)) measures the representation similarity between
query node qi and its positive sample u∈pos(qi) in one view.
The sim(·) denotes the cosine similarity. τ is the temperature

parameter. If τ is set to small, the model more focuses on
separating the negative samples that are most similar to the
query node [40]. Different from the previous contrastive loss,
which focuses on maximizing mutual information between
representations of the same node, we mainly concentrate on
the relationships between the query node and its positive sam-
ples. For the hypergraph view, we use a similar equation, but
the representations are replaced by hyperedge representations.

Given two views, we see the representation of node qi in
one view and the representation of node u (u∈pos(qi)) from
another view as the positive pair, while the representation
of node qi in one view and the representation of node v
(u/∈pos(qi)) from another view compose the negative pair.
Then the inter-view contrastive learning is defined as follows:
Linter(qi) =

1

2

1

|pos(qi)|
∑

u∈pos(qi)

[
I(h(qi),h

′(u) + I(h′(qi),h(u))
]
,

(13)
where I(h(qi),h

′(u)) or I(h′(qi),h(u)) measures the repre-
sentation similarity between query node qi in one view and its
positive node u in another view. They are defined as follows:

I(h(qi),h
′(u)) = − log

exp(sim(h(qi),h
′(u))/τ)∑

v∈V exp(sim(h(qi),h′(v))/τ)
,

I(h′(qi),h(u)) = − log
exp(sim(h′(qi),h(u))/τ)∑

v∈V exp(sim(h′(qi),h(v))/τ)
.

(14)

Given the training dataset D, the overall contrastive learning
loss is given as follows:
Ls =

∑
(qi,pos(qi))∈D

Ls(qi, pos(qi))

=
∑

(qi,pos(qi))∈D

1

2
(Lintra(qi, G) +Lintra(qi, Gaug)) + λLinter(qi),

(15)
where Lintra(qi, G) and Lintra(qi, Gaug) denote the intra-
view contrastive loss in the original graph G and the augmen-
tation graph Gaug , respectively. Linter(qi) is the inter-view
contrastive loss. λ denotes the weight of inter-view contrastive
loss. Since the representations of node qi from two views are
also helpful for training, we see these two representations of
node qi as positive pairs, the representation of node qi in one
view and the representations of other nodes in another view
as negative pairs. Then we add an unsupervised comparative
loss, which is defined as follows:
Lu =

∑
(qi∈D)

Lu(qi) =
∑

(qi∈D)

1

2

[
I(h(qi),h

′(qi)) + I(h′(qi),h(qi))
]
,

(16)
where I(h(qi),h

′(qi)) and I(h′(qi),h(qi)) measure the rep-
resentation similarity of the query node qi between two views.

Then the final loss function is defined as follows:
L = Ls + αLu, (17)

where α is weight of unsupervised loss. We note that α and
λ are hyperparameters inherent to machine learning models,
and we have evaluated their sensitivities in the experiments.
D. Algorithms

The COCLE training process is shown in Algorithm 1. In
the loop, it first uses the proposed model to encode the nodes
(Lines 6-13). Then, the hyperedge representations are obtained
by P(·) (Line 14). After that, two sets of representations are
transformed by a shared MLP (Line 15). Finally, the loss is
computed (Lines 16-17) and parameters are updated (Line 18).

Algorithm 1: The COCLE training
Input: Graph G, training set D, parameters τ , λ, α, r, L.
Output: parameters of model COCLE.

1 Build augmentation graph Gaug with r-hop neighbors;
2 while not converge do
3 L=0;
4 for (qi, pos(qi))∈D do
5 l=0;
6 while l < L do
7 H

(l+1)
q = σ(D̂−1/2ÂD̂−1/2H

(l)
q Θ

(l)
q);

8 H
(l+1)
s = σ(D̂−1/2ÂD̂−1/2H

(l)
s Θ

(l)
s);

9 H
(l+1)
f = σ(τ

(l+1)
q H

(l+1)
q + τ

(l+1)
s H

(l+1)
s +

D̂−1/2ÂD̂−1/2H
(l)
f Θ

(l)
f);

10 Z
(l+1)
q = σ(D−1

v HWHD−1
e HTZ

(l)
q Θ̂

(l)
q);

11 Z
(l+1)
s = σ(D−1

v HWHD−1
e HTZ

(l)
s Θ̂

(l)
s);

12 Z
(l+1)
f = σ(τ̂

(l+1)
q Z

(l+1)
q + τ̂

(l+1)
s Z

(l+1)
s +

D−1
v HWHD−1

e HTZ
(l)
f Θ̂

(l)
f);

13 l=l+1;

14 H←H
(L)
f ,H ′←P(Z

(L)
f);

15 H = σ(Hθ1 + b1)θ2 + b2,H
′ =

σ(H ′θ1 + b1)θ2 + b2;
16 compute the loss L(qi)=Ls(qi)+αLu(qi);
17 L = L+L(qi);

18 Update parameters of model COCLE by using gradient
descent to minimize L;

19 return parameters of model COCLE;

Algorithm 2: Community Search
Input: COCLE model, query node q, threshold p, L.
Output: Community Cq .

1 l=0;
2 while l < L do
3 H

(l+1)
q = σ(D̂−1/2ÂD̂−1/2H

(l)
q Θ

(l)
q);

4 H
(l+1)
s = σ(D̂−1/2ÂD̂−1/2H

(l)
s Θ

(l)
s);

5 H
(l+1)
f = σ(τ

(l+1)
q H

(l+1)
q + τ

(l+1)
s H

(l+1)
s +

D̂−1/2ÂD̂−1/2H
(l)
f Θ

(l)
f);

6 l=l+1;

7 H = σ(H
(L)
f θ1 + b1)θ2 + b2;

8 p(u|q)=sigmoid(sim(h(q),h(u))), ∀u∈V ;
9 Cq = {u|p(u|q)≥p};

10 return Cq;

Given the new query node q, we use the trained model
to encode the nodes in the graph. Algorithm 2 describes the
community search method. When using the model to encode
the nodes in the graph G for query node q (Lines 1-6), the
distance of representations between the nodes in Cq and query
node q becomes smaller than that of nodes in V \ Cq and q.
Then, we use the Eq.(18) to obtain the probability of whether
a node belongs to community Cq (Line 8):

p(u|q) = sigmoid(sim(h(u),h(q))), (18)
where sim(·) measures the similarity between query node q
and other nodes, and sigmoid(·) is an activation function
that maps the similarity into [0,1]. Then community Cq is
composed of the nodes whose probability is larger than the
given threshold p (Line 9).
VI. COCLEP: OPTIMIZATION BY GRAPH PARTITIONING

Although the proposed Algorithm 1 can effectively answer

the community search query, it needs at least O((m+ndL)|D|)
space in training process, where m is the number of edges, n
is the number of nodes, d is the dimension, L is the number
of GNNs layers, and |D| is the training dataset size. It may
easily run out of memory on GPU when the graph is very large.
Besides, Algorithm 1 needs O(mL|D|) time to train a model
in each iteration. When m is large, the training cost becomes
very high. The details for complexity analysis of Algorithm 1
is shown in the last part of this section.

The major challenge for model training on large graphs
is that the graph convolution operator needs to iteratively
aggregate the neighbors information for all nodes in the graph.
Thus, all the node features are needed to store on GPU. When
the graph is large, it leads to out of the memory. Since the
community is generally densely connected and community
nodes locate around the query node, the training based on the
entire graph may not be necessary. We can train the model by
identifying a moderate-sized subgraph that contains the query
node and conducting the training mainly on the subgraph. How
to find such a possible subgraph is important as it can influence
the effectiveness of the trained model.

Our goal is to find a partition such that the obtained node
representations are close to the node representations trained
from the original graph. Let G′ is the partitioned graph that
removes some edges from G, h(u) and ĥ(u) denote the
representation of node u obtained from the original graph and
partitioned graph respectively. We use the L2 norm to measure
distance between h(u) and ĥ(u), i.e., dist(h(u), ĥ(u)) =

∥h(u)− ĥ(u)∥2 =
√∑

i(h(u)i − ĥ(u)i)2, where h(u)i and
ĥ(u)i is the element on the vector h(u) and ĥ(u) respectively.
Analysis. We observed that if ∥h(u)− ĥ(u)∥2 is small for all
u ∈ V , sim(ĥ(q), ĥ(u)) is close to sim(h(q),h(u)). We refer
interested readers to Lemma 1 and Lemma 2 in our technical
report [41] for more details. Thus, to guarantee that the result
from the partitioned graph is close to that from the original
graph, we should minimize the upper bound of ∥h(l)

u − ĥ
(l)
u ∥2.

Let B(G′)={u|u∈V, s.t.∃v∈V, (u, v)∈E(G), (u, v)/∈E(G′)},
N(u) = N(u,G) = {v|v∈V, s.t.∃(u, v)∈E(G)} ∪ {u},
N(u)′=N(u,G′)-B(G′), and N(u)′′=N(u,G′)-N(u)′. We
denote σ(·) is the ReLU activation function. In the following,
unless otherwise stated, h(l)

u denotes the row vector.
In the l-th layer of the graph convolutional operator, we

have

h(l)
u = σ

 ∑
v∈N(u)

αv,uh
(l−1)
v Θ(l−1)

 = σ(h̄(l)
u + β(l)

u),

where h̄
(l)
u =

∑
v∈N(u)′ αv,uh

(l−1)
v Θ(l−1), β

(l)
u =∑

v∈(N(u)−N(u)′) αv,uh
(l−1)
v Θ(l−1), αv,u = 1√

1+dv

√
1+du

which is an element of a normalized relation matrix. dv and
du are the degrees of node v and node u.

In the partitioned graph G′,

ĥ(l)
u = σ

 ∑
v∈N(u)′∪N(u)′′

α̂v,uĥ
(l−1)
v Θ(l−1)

 = σ(h̃(l)
u +γ(l)

u),

Algorithm 3: The COCLEP training
Input: Graph G, training dataset D, parameters τ , λ, α r,

number of partitions nc.
Output: parameters of model COCLEP.

1 Ĉ={Ĉ1, Ĉ2, ..., Ĉnc}←partition graph into nc clusters;
2 for (qi, pos(qi))∈D do
3 Gqi←G(Ĉqi ∪ Ĉb

qi);
4 Construct the augmentation graph Gaug,qi for Gqi with

r-hop neighbors;
5 D̂ = D̂∪(qi, pos(qi), Gqi , Gaug,qi);

6 while not converge do
7 L=0;
8 for (qi, pos(qi), Gqi , Gaug,qi)∈D̂ do
9 Algorithm 1 lines 5-17;

10 Algorithm 1 line 18;

11 return parameters of model COCLEP;

where h̃
(l)
u =

∑
v∈N(u)′ αv,uĥ

(l−1)
v Θ(l−1), γ

(l)
u =∑

v∈N(u)′′ α̂v,uĥ
(l−1)
v Θ(l−1), α̂v,u is an element of a normal-

ized relation matrix in the partitioned graph.
Theorem 1: ∥h(l)

u − ĥ
(l)

u ∥2 ≤ Cmax
v∈V

{∥h(l−1)
v − ĥ

(l−1)
v ∥F }

∥Θ(l−1)∥F + B1 + B2, where C=max
v∈V

{deg(v)}, B1 =∑
v∈N(u)−N(u)′ αv,u∥h(l−1)

v ∥F ∥Θ(l−1)∥F , B2 =
∑

v∈N(u)′′

α̂v,u∥ĥ(l−1)
v ∥F ∥Θ(l−1)∥F . ∥·∥F is the Frobenius norm.

By Theorem 1, the representations are related to the nodes
that are cut. If the cut is minimized, the set N(u)−N(u,G′)
and N(u)′′ will be small, which will decrease the upper

bound of ∥h(l)
u − ĥ

(l)

u ∥2. Thus, we can partition the graph by
using the min-cut (e.g., METIS [42]). We term our method
as COCLEP. Min-cut guarantees that the links inside the
clusters are dense and the links among clusters are sparse.
According to our experiments, such high-quality partition even
helps in locating communities because communities are also
densely connected internally. With the partitioned graphs, we
can further reduce the unnecessary influence from the irrel-
evant nodes. As the graph is partitioned into several disjoint
subgraphs, each query node in the training dataset will belong
to only one cluster. Then, we can perform the model training
on the subgraph that contains the specific query node. As such,
the final contrastive loss function can be redefined as follows:
LC =

∑
(qi,pos(qi))∈D

(Ls(qi, pos(qi), Gqi) + αLu(qi, pos(qi), Gqi)) ,

where Gqi denotes the subgraph containing query qi.
Ls(qi, pos(qi), Gqi) and Lu(qi, pos(qi), Gqi) are the semi-
supervised contrastive learning loss and unsupervised con-
trastive learning loss for the given query task (qi, pos(qi)) in
Gqi , respectively.
Subgraph Community Rejoining. As the graph is partitioned
into disjoint partitions, nodes that belong to the same commu-
nity may be divided into different partitions. To solve this
problem, for each partition, we add the nodes that are located
at the boundary of the partition and are the neighbors of the
query node qi. Let Ĉqi be one of the partitions, where the
boundary is defined as Ĉb

qi={u | u ∈ (V \ Ĉqi) ∩N(qi)}. In
other words, the boundary of a partition contains the nodes
that can link to other partitions. Then, the subgraph for a

Algorithm 4: Partition-based Community Search
Input: COCLEP model, query node q, threshold p, clusters

Ĉ of G.
Output: Community Cq .

1 Gq←G(Ĉq ∪ Ĉb
q);

2 H ←Algorithm 2 lines 1-6;
3 p(u|q)=sigmoid(sim(hG(q),hG(u))), ∀u∈VGq ;
4 Cq = {u|p(u|q)≥p};
5 for u∈Ĉb

q do
6 if p(u|q)≥p then
7 Gu←G(Ĉu ∪ Ĉb

u);
8 Hu ←Algorithm 2 lines 1-6;
9 hu(q) = hu(q) + h(q);

10 p(v|q)=sigmoid(sim(hu(q),hu(v))), ∀v∈VGu ;
11 Cq=Cq ∪ {v|p(v|q)≥p};

12 return Cq;

query node qi is the subgraph induced by Ĉqi and Ĉb
qi , i.e.,

Vqi = Ĉqi∪Ĉb
qi . By doing so, if a node u in Ĉb

qi belongs to Cqi

with a high probability, we regard node qi as the query node
in the another partition to search for the community. Then, we
can include more nodes that originally belonged to the same
community but were partitioned into different partitions.

The partition-based training algorithm and the community
search algorithm are presented in Algorithm 3 and Algorithm
4, respectively. Algorithm 3 first partitions the graph into
nc partitions (Line 1). After that, it reconstructs the training
dataset by getting the induced subgraph with nodes in Ĉqi

and Ĉb
qi and builds the hypergraph (Lines 2-5). Then, it trains

the model (Lines 6-10) similar to Algorithm 1. The difference
is that it trains the model only based on partitioned graphs.
Algorithm 4 shows the pseudo-code for community search
using the partitions. It first obtains the community in Gq (Lines
1-4). Then it finds the community in other partitions (Line 5).
If p(u|q)≥p, it sees q as the query node in the graph Gu

to search for the community Cq (Lines 5-11). To capture the
information of node q in the Gq , we consider adding h(q) to
hu(q) (Line 9).
Complexity Analysis. In the following, we analyze the time
and space complexity of our proposed algorithms to demon-
strate the effectiveness of COCLEP.

Theorem 2: Let d be the dimension of node representations,
L be the number of GNNs layers, |D| be number of query
nodes, T be the number of iterations. The time complexity
of Algorithm 1 depends on the size of r to augment the
hypergraph, where it takes O(mL|D|T) time when r=1,
O(nm+ n2L|D|T) time when r>1. The space complexity is
O((m+ndL)|D|) when r=1, O((n2 +ndL)|D|) when r>1.

Theorem 3: Algorithm 2 takes O(mL) time and O(m +
ndL) space, where n is the number of nodes in G, m is the
number of edges in G, L is the number of GNNs layers, and
d is the dimension of node representations.

Theorem 4: Let nqi and mqi be the number of nodes
and edges in the partition Cqi that contains the query node
qi. d is the dimension of node representations. L is the
number of GNNs layers, and T is the number of iterations.
Depending on the size of r to augment the hypergraph,
Algorithm 3 takes O(m +

∑
qi∈D mqiLT) time when r=1,

and O(m +
∑

qi∈D nqimqi + n2
qiLT) time when r>1. The

space complexity is O(m +
∑

qi∈D mqi + nqidL) when r=1
and O(m+

∑
qi∈D n2

qi + nqidL) when r>1.
Theorem 5: Algorithm 4 takes O(

∑
u∈Ĉb

q∪{q} m
′
uL) time

and O(
∑

u∈Ĉb
q∪{q} m

′
u + n′

udL) space.
Since mqi and nqi are much smaller than m and n,

Algorithm 3 is faster than Algorithm 1. Note that when the
number of partitions nc is large, the values of nqi and mqi

become smaller, and the time complexity and space complexity
are also lower.

VII. EXPERIMENTS

This section presents the performance of COCLE and
COCLEP in various aspects.
A. Experimental Setting
Datasets. We use eight real-life graphs with ground-truth
communities in our experiments. Football can be found in
http://www-personal.umich.edu/∼mejn/netdata/. Citeseer and
Cora are from [43]. The Facebook dataset is from [44]. Ama-
zon, DBLP, Youtube, and LiveJournal can be found in SNAP
(http://snap.stanford.edu/data/). Table II shows the statistics of
the datasets, which are ordered by the number of edges, where
|C| denotes the number of ground-truth communities in the
datasets. Note that for the datasets from SNAP, we use the
top-5000 ground-truth communities with the highest quality.
Algorithms. To evaluate the effectiveness and efficiency of
COCLE and COCLEP, we compare the existing cohesiveness
model-based methods, including K-core [1], EquiTruss [6], K-
ECC [5], and CTC [4]. We also compare the learning-based
methods ICS-GNN [11] and QD-GNN [12]. The implemen-
tation of all baseline algorithms are provided by the authors.
We note that the QD-GNN can not be applied to large-scale
datasets, we compare the QD-GNN-P, which applies the QD-
GNN in our proposed partition-based framework.

For COCLE and COCLEP and all their variants, we set
the learning rate to 0.001, the dropout ratio to 0.1, the batch
size to 64. The number of layers L is 3. The dimension of
hidden features is set to 256. For the r-hop neighbors, we
use 1 by default. We implement our methods in PyTorch
with PyTorch Geometric, and models are trained by Adam
[45]. The L2 penalty for Adam is 0.0005. The number of
epochs is set to 200. The parameter τ is 0.2. The α and λ
mainly affect the precision and further affect the other metrics.
When α and λ are increased, the precision is increased. We
increase these two parameters from small to large to find the
appropriate parameters. For Citeseer, α and λ are set to 0.0001
and 0.0001, respectively. For Cora, they are set to 0.001 and
0.001. For Youtube, they are set to 100 and 100. For other
datasets, they are set to 0.2 and 0.2, respectively. The threshold

TABLE II: Dataset statistics.
Data Set |V| |E| |C|
Football 115 613 12
Citeseer 3,327 4,552 6

Cora 2,708 5,278 7
Facebook 3,622 72,964 130
Amazon 334,863 925,872 5,000
DBLP 317,080 1,049,866 5,000

Youtube 1,134,890 2,987,624 5,000
LiveJournal 3,997,962 34,681,189 5,000

p for determining whether a node belongs to the community
is obtained by searching for the optimal precision or F1-score
from the validation set. The search range is [0.1, 0.9] with
a 0.05 step. For Football, Citeseer, Cora, Facebook, Amazon,
DBLP, Youtube, LiveJournal, the default nc are 2, 3, 3, 5,
100, 100, 300, 1000, respectively. Both ICS-GNN and QD-
GNN need attributes to obtain the initial feature matrix, while
we focus on simple graphs without attributes. Thus, we use
the normalized core number as the initial feature matrix for
all ML-based community search methods. We use the default
parameter setting in [11], [12], respectively. Note that ICS-
GNN generates a subgraph with 400 nodes and then trains
a model on this subgraph for each query node. We run all
ML-based community search methods 5 times and report the
average results with the standard deviation. We mainly use the
DBLP and Youtube to evaluate the parameters influence and
the components in our proposed model, most other datasets
have the similar results with these two datasets. All experi-
ments were conducted on a machine having 3.50GHz Intel(R)
Xeon(R) CPU E5-2637, 128GB memory, and 2 NVIDIA RTX
A4000 Graphics Cards (GPU) with 16GB memory.
Query and Data Generartion. To generate the training
datasets, we randomly select a node from the ground-truth
communities to generate the query node, and then randomly
select 3 nodes from the same community as positive samples.
For the validation sets and test sets, we only randomly select a
node from the ground-truth communities to generate the query
node. But the query tasks in the validation set contain ground-
truth communities. To evaluate the effectiveness of models for
query nodes in unseen communities, we divide all ground-truth
communities into two groups to generate training tasks and
test query tasks with a ratio of about 1: 4. Then we randomly
select 0.25 of the ground-truth communities in the training
set for validation task set generation. The training dataset,
validation dataset, and test dataset contain 300, 100, and 500
query tasks, respectively. Since the number of ground-truth
communities of Football, Citeseer, and Cora is small, we do
not split the ground-truth communities to generate the tasks
on these datasets. Note that, for fairness, we try to use the
same number of labels to compare. ICS-GNN uses 3 positive
and 3 negative samples for each query task. QD-GNN and
QD-GNN-p use 3 positive samples and 3 negative samples in
the training dataset. Our methods only use 3 positive samples.
Evaluation Metrics. To evaluate the quality of the found
results, we employ three metrics: F1-score [46], Normalized
Mutual Information (NMI) [47], Jaccard similarity [44]. We
report the average score for 500 query tasks.
B. Evaluation of Community Search

1) Effectiveness Evaluation: We show the effectiveness
results in Table III. Compared with the non-ML-based models
(e.g., K-Core, K-Truss, K-ECC, and CTC), COCLEP consis-
tently outperforms them in terms of all the three metrics in all
datasets. This is because the ML-based method can be more
flexible in capturing various types of community structures.
Compared with ML-based models (e.g., ICS-GNN and QD-
GNN), COCLEP, QD-GNN-P and ICS-GNN are more scal-
able. QD-GNN and COCLE need to train the model from the

TABLE III: Effectiveness on COCLE and COCLEP compared with other methods (in percentage). In training datasets, for
each query node, ICS-GNN uses 3 positive samples and 3 negative samples; QD-GNN and QD-GNN-P uses 3 positive samples
and 3 negative samples; COCLE and COCLEP use 3 positive samples only.

Metric Dataset K-Core K-Truss K-ECC CTC ICS-GNN QD-GNN QD-GNN-P COCLE COCLEP

F1

Football 14.88 82.18 33.42 78.79 26.29±0.46 83.86±0.36 82.53±1.04 85.64±0.46 84.27±2.15
Citeseer 15.66 0.95 7.11 0.88 3.94±0.03 19.04±0.00 24.10±0.00 28.27±0.10 31.86±0.0

Cora 20.92 4.32 7.69 1.77 8.86±0.13 23.11±0.69 38.52±0.20 23.00±1.12 39.51±0.0
Facebook 20.31 30.82 32.33 36.15 23.60±0.28 38.48±1.16 37.49±1.17 40.55±0.32 39.82±0.80
Amazon 38.56 84.43 75.48 74.38 25.12±0.40 o.o.m 80.50±1.28 o.o.m 89.15±0.48
DBLP 5.35 63.13 62.49 66.70 25.05±0.48 o.o.m 56.67±1.44 o.o.m 69.43±0.20

Youtube 0.08 12.01 15.92 47.57 15.20±0.07 o.o.m 22.98±2.04 o.o.m 48.82±0.19
LiveJournal 6.39 70.03 7.17 72.15 24.15±0.33 o.o.m 56.78±1.79 o.o.m 73.24±0.24

NMI

Football 2.57 75.56 20.25 69.08 6.61±0.43 76.47±0.70 75.31±1.96 79.11±0.85 77.35±3.06
Citeseer 1.63 0.52 0.93 0.50 1.64±0.02 1.14±0.00 5.39±0.00 0.24±0.29 5.15±0.0

Cora 0.98 1.96 2.03 1.13 3.62±0.08 10.55±0.38 13.97±0.14 8.33±4.18 13.79±0.0
Facebook 14.53 23.73 24.08 27.63 14.39±0.23 31.79±0.26 31.58±0.74 32.37±0.23 31.80±0.63
Amazon 37.21 82.17 72.47 71.68 20.13±0.35 o.o.m 76.59±1.46 o.o.m 87.11±0.55
DBLP 5.12 59.58 59.17 63.35 19.76±0.48 o.o.m 52.11±1.41 o.o.m 64.78±0.26

Youtube 0.04 10.92 13.87 43.51 12.48±0.07 o.o.m 20.50±1.88 o.o.m 46.02±0.19
LiveJournal 5.90 66.26 6.83 68.04 19.54±0.32 o.o.m 53.31±1.74 o.o.m 69.31±0.24

Jaccard

Football 8.08 77.77 26.06 71.58 15.56±0.34 78.92±0.44 77.85±1.43 81.31±0.85 79.23±2.99
Citeseer 9.12 0.51 4.08 0.44 2.05±0.01 11.26±0.00 15.85±0.00 16.61±0.07 20.03±0.0

Cora 11.99 2.58 4.27 0.90 4.72±0.07 14.72±0.54 25.48±0.20 14.25±0.69 25.86±0.0
Facebook 14.07 22.78 23.00 25.87 14.20±0.19 28.71±0.58 28.05±0.87 30.65±0.26 29.86±0.74
Amazon 35.39 78.61 66.80 66.35 15.18±0.32 o.o.m 70.53±1.83 o.o.m 84.24±0.69
DBLP 4.85 54.82 54.40 58.04 14.68±0.34 o.o.m 45.49±1.56 o.o.m 59.04±0.35

Youtube 0.04 9.36 10.96 37.74 8.39±0.05 o.o.m 15.31±1.54 o.o.m 38.48±0.20
LiveJournal 5.27 60.92 6.36 61.91 14.44±0.24 o.o.m 46.28±1.84 o.o.m 62.75±0.33

Football Citeseer Cora Facebook Amazon DBLP Youtube LiveJournal
102

103

104

105

Tr
ai

n
Ti

m
e

(s
)

QD-GNN QD-GNN-P COCLE COCLEP

Fig. 4: Training time.

Football Citeseer Cora Facebook Amazon DBLP Youtube LiveJournal
10 4
10 3
10 2
10 1
100
101
102
103

Qu
er

y
Ti

m
e

(s
)

K-Core
QD-GNN

K-Truss
QD-GNN-P

K-ECC
COCLE

CTC
COCLEP

ICS-GNN

Fig. 5: Query time for all methods.
whole graph, leading to out-of-memory errors on large graphs.
Thus, the results of QD-GNN and COCLE for larger datasets
are not reported and marked as out-of-memory (o.o.m.). On
the small datasets, COCLE and COCLEP achieve better
performance compared with QD-GNN and QD-GNN-P on
Football and Facebook and comparable performance on Cora
and Citeseer. On the large datasets, COCLEP consistently
outperforms QD-GNN-P. Thus, QD-GNN and QD-GNN-P
may not be suitable for semi-supervised learning with few
labels known for each query node. The effectiveness of ICS-
GNN is relatively lower compared with the other ML-based
models, because it is proposed for a different kind of learning
process, i.e., it needs to be interactively provided labels and it
is proposed for the attributed graphs. Besides, it needs to set
the community size to find the community. When the com-
munity size is not properly set, the results can be influenced.

Comparing COCLE and COCLEP, we surprisingly find that
COCLEP can perform even better than COCLE sometimes.
One reason is that the graph partitioning also supervises how
to form the community in some sense. All in all, we conclude
that COCLEP is the most effective method in general. See
the technical report [41] for more experimental results.

2) Training Efficiency: Figure 4 shows the training time
for the ML-based methods. We do not report the training
time for ICS-GNN because it is an interactive method that
requires retraining the model whenever there is a new query.
In other words, the training process of ICS-GNN is performed
repetitively instead of only once. On all datasets except for the
Football, Citeseer, Cora, Facebook, QD-GNN and COCLE
run out of memory on GPU. We can see that COCLE and
COCLEP always achieve the comparable efficiency compared
with QD-GNN and QD-GNN-P except for Football. COCLEP
and QD-GNN-P train the model faster because their cost is
related to local subgraphs. Since the Football is very small,
the COCLEP and QD-GNN-P do not show the superiority of
partition.

3) Query Efficiency: Figure 5 reports the query time for
all methods. Since ICS-GNN needs to train a model for each
query node, we sum up its training time and prediction time
as the query time. Thus, its query time is not better than that
of COCLEP, COCLE, QD-GNN and QD-GNN-P. CTC has
the fastest query processing on most datasets because it uses
local exploration to find the community and the ground-truth
communities usually have small diameters. The query time of
COCLEP is comparable to or better than other methods on
most datasets.
C. Parameter Analysis

1) Varying training set size, validation size, number of the
epoch: Figures 6, 7, 8 show the effectiveness with varying the

100 200 300 400 500
Train

0.55
0.60
0.65
0.70
0.75

Ef
fe

ct
iv

en
es

s
F1
NMI
Jaccard

(a) DBLP

100 200 300 400 500
Train

0.30
0.35
0.40
0.45
0.50

Ef
fe

ct
iv

en
es

s

F1
NMI
Jaccard

(b) Youtube

Fig. 6: Effectiveness with varying train
size.

100 200 300 400 500
Validation

0.55
0.60
0.65
0.70
0.75

Ef
fe

ct
iv

en
es

s

F1
NMI
Jaccard

(a) DBLP

100 200 300 400 500
Validation

0.30
0.35
0.40
0.45
0.50

Ef
fe

ct
iv

en
es

s

F1
NMI
Jaccard

(b) Youtube

Fig. 7: Effectiveness with varying valida-
tion size.

100 200 300 400 500
Epoch

0.55
0.60
0.65
0.70
0.75

Ef
fe

ct
iv

en
es

s

F1
NMI
Jaccard

(a) DBLP

100 200 300 400 500
Epoch

0.30
0.35
0.40
0.45
0.50

Ef
fe

ct
iv

en
es

s

F1
NMI
Jaccard

(b) Youtube

Fig. 8: Effectiveness with varying number
of epochs.

0.2 0.4 0.6 0.8 1.00.5
0.6
0.7
0.8
0.9
1.0

Ef
fe

ct
iv

en
es

s F1
NMI
Jaccard
Precision

(a) DBLP

0.01 0.1 1 10 1000.2
0.4
0.6
0.8
1.0

Ef
fe

ct
iv

en
es

s F1
NMI
Jaccard
Precision

(b) Youtube

0.2 0.4 0.6 0.8 1.00.35
0.45
0.55
0.65
0.75

Ef
fe

ct
iv

en
es

s

F1
NMI
Jaccard
Precision

(c) DBLP

0.01 0.1 1 10 1000.2
0.4
0.6
0.8
1.0

Ef
fe

ct
iv

en
es

s F1
NMI
Jaccard
Precision

(d) Youtube

0.2 0.4 0.6 0.8 1.0
,

0.5
0.6
0.7
0.8
0.9
1.0

Ef
fe

ct
iv

en
es

s F1
NMI
Jaccard
Precision

(e) DBLP

0.01 0.1 1 10 100
,

0.2
0.4
0.6
0.8
1.0

Ef
fe

ct
iv

en
es

s F1
NMI
Jaccard
Precision

(f) Youtube

Fig. 9: Effectiveness with varying α and λ.

100 300 500 700 900
nc

0.55
0.60
0.65
0.70
0.75

Ef
fe

ct
iv

en
es

s

F1
NMI
Jaccard

(a) DBLP

300 500 700 900 1100
nc

0.30
0.35
0.40
0.45
0.50

Ef
fe

ct
iv

en
es

s

F1
NMI
Jaccard

(b) Youtube
Fig. 10: Effectiveness with varying nc.

F1 NMI Jaccard0.82

0.84

0.86

0.88

0.90
r=1 r=2

(a) Amazon

F1 NMI Jaccard0.55

0.60

0.65

0.70

0.75
r=1 r=2

(b) DBLP

Fig. 11: Effectiveness with varying r. F1 NMI Jaccard0.50

0.55

0.60

0.65

0.70

COCLEP-NA COCLEP-DE COCLEP-DN COCLEP-Diff COCLEP

F1 NMI Jaccard0.50

0.55

0.60

0.65

0.70

(a) DBLP

F1 NMI Jaccard0.25

0.30

0.35

0.40

0.45

0.50

(b) Youtube

Fig. 12: Effectiveness with different aug-
mentation methods.

0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

F1

COCLEP-NA
COCLEP

COCLEP-DE COCLEP-DN COCLEP-Diff

0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

F1

Fig. 13: F1-score of different augmenta-
tion methods on synthetic datasets.

F1 NMI Jaccard0.0

0.2

0.4

0.6

0.8

1.0 COCLEP-S
COCLEP

(a) DBLP

F1 NMI Jaccard0.0

0.2

0.4

0.6

0.8 COCLEP-S
COCLEP

(b) Youtube

F1 NMI Jaccard0.55

0.60

0.65

0.70

0.75 COCLEP-Q
COCLEP

(c) DBLP

F1 NMI Jaccard0.35

0.40

0.45

0.50 COCLEP-Q
COCLEP

(d) Youtube

Fig. 14: Effectiveness with feature fuse model.

training dataset size, validation dataset size, and number of
epochs. We observed that when training size is increased, the
F1-score, NMI, and Jaccard are also increased. This is because
if the training size is increased, there will be more information
about the ground-truth communities are learned, which leads
to an effective model. But when increasing the validation size,
these scores have not changed much. Thus, only a few ground-
truth communities can help to obtain an effective threshold p.
If the number of epochs is increased, these scores are slightly
decreased due to over-fitting on Youtube.

2) Varying α and λ: Figure 9 (a)-(b) report the effec-
tiveness with varying α. We observed that the precision
is increased on DBLP and Youtube when α increases. On
youtube, the F1-score, NMI, and Jaccard score are increased
when α increases. On DBLP, however, the F1-score, NMI, and
Jaccard score decrease when we increase α. This is because
some nodes in the ground-truth communities are removed
when α increases. As shown in Figure 9 (c)-(d), the F1-score,
NMI, and Jaccard score are not sensitive to different settings
of λ. But on Youtube, the precision has a large fluctuation.
This is due to the α is set 100, when we increase the λ,
there is a large gap between α and λ. However, when we
increase α and λ simultaneously on 9 (e)-(f), the precision
is increased, the F1-score, NMI, and Jaccard score have little
fluctuation on DBLP, while the F1-score, NMI, and Jaccard
score are increased on Youtube. Thus, we can increase α and

λ simultaneously to find suitable parameters.
3) Varying nc: Figure 10 shows the effectiveness with

various nc values on DBLP and Youtube. We observed that
when nc increases, the F1-score, NMI, and Jaccard score have
a slightly decreasing trend. This is because the graph structure
is changed if nc is set large and each partition becomes small.
To conclude, COCLEP is not sensitive to the setting of nc

for a reasonable range of settings.
4) Varying r: Figure 11 shows the F1-score, NMI, Jac-

card score of Amazon, DBLP with varying parameter r in
constructing the hypergraph augmentation view. Since on the
Youtube, COCLEP runs out of the memory when r=2, we
do not show the results on the Youtube. When we increase
r, the metric values of COCLEP are decreased, concluding
that r = 1 can already gives a satisfactory performance. This
is because the ground-truth community usually has a small
diameter. The 1-hop subgraph of one node already contains
enough nodes in the ground-truth community that this node
belongs to. Thus, for practical efficiency concerns, we always
set r = 1.
D. Ablation analysis

1) Augmentation Methods Evaluation: Figure 12 shows
the values of variants of COCLEP. COCLEP-NA has no
augmentation method, and it only uses the original view to
train the model. COCLEP-DE and COCLEP-DN use random
edge dropping and node dropping with a ratio of 0.1 to

0 50 100150200250300
epochs

0.0
0.2
0.4
0.6
0.8

F1

COCLEP QD-GNN-P ICSGNN

0 50 100150200250300
epochs

0.0
0.2
0.4
0.6
0.8
1.0

F1

(a) Amazon

0 50 100150200250300
epochs

0.0
0.2
0.4
0.6
0.8

F1

(b) DBLP

Fig. 15: Convergence analysis.
generate the augmentation view, respectively. COCLEP-Diff
[48] generates a view by transforming an adjacency matrix to
a diffusion matrix. Since the diffusion matrix is too dense, it
easily leads to out of the GPU memory. We select the nodes
as the neighbors with the top-10 value. We observe that CO-
CLEP achieves competitive performance compared with other
methods. Compared with COCLEP-ND, COCLEP achieves
a significantly higher F1 score on Youtube. This demonstrates
that our proposed hypergraph augmentation method can be
more beneficial in finding the community.

We further use synthetic datasets to analyze the effectiveness
of different augmentation methods in Figure 13. The synthetic
datasets are generated by LFR benchmark [49]. The default
parameters of the synthetic network are V =5000, davg=20,
dmax=100, Cmin=20, and Cmax=100. We change the pa-
rameter µ, which is the fraction of edges that are between
different communities, to analyze the effectiveness of different
augmentation methods. When µ is large, the average clustering
coefficient of the network becomes small, and discovering the
community is difficult. When µ=0.3, we set α and λ to 0.1.
When µ=0.4, we set α and λ to 0.01. For other values of
µ, we set α and λ to 1. We use the threshold determined
by the optimal F1 score on the validation dataset. In Figure
13, we can see that if µ is small, the F1 score of COCLEP-
DE, COCLEP-DN, COCLEP are close. When µ increases,
COCLEP achieves better performance. Thus, when the average
clustering coefficient of the network is smaller, COCLEP is in
general better than other methods. This may also indicate the
rationale behind the performance on DBLP and Youtube. On
DBLP, the average clustering coefficient is 0.632, while for
Youtube it is 0.081. So, compared with other augmentation
methods, COCLEP achieves significantly higher effectiveness
on the Youtube dataset whereas the results for DBLP are close.

2) Fearture Fuse Model Analysis: Figure 14 (a)-(b) show
the values of COCLEP-S and COCLEP. COCLEP-S only
uses the structure encoder to train the model. With only
the structure encoder used, the model cannot capture the
query node information, leading to low effectiveness. Figure
14 (c)-(d) shows the values of COCLEP-Q and COCLEP.
COCLEP-Q only uses query node encoder to train the model.
COCLEP achieves the better performance compared with
the COCLEP-Q. This demonstrates the effectiveness of the
proposed fuse model.

3) Convergence Analysis: Figure 15 shows the convergence
trend of COCLEP, QD-GNN-P, and ICS-GNN. Since on
Youtube, QD-GNN-P can not be completed in a reasonable
time, we show the results on Amazon and DBLP. We observed
that COCLEP and ICS-GNN converge quickly (around using
50 epochs) while QD-GNN-P tends to have fluctuations.

COCLEP has a better F1-score compared with ICS-GNN and
QD-GNN across a wide range of epochs.
E. Case study

query

(a) K-Core

query

(b) K-Truss

query

(c) K-ECC

query

(d) CTC

query

(e) COCLEP

query

(f) Ground-truth

Fig. 16: Case Study.
We conducted a case study to show the usefulness of

COCLEP on Amazon dataset. In Figure 16, the query node is
marked in white color, and the nodes in black colors are those
in the communities returned by different methods or in the
ground-truth community. We note that our algorithm returns a
community that is the closest to the ground-truth community.
In contrast, other methods only find part of the ground-truth
community, for the reason that they use a predefined structure
to search the community, making them sometimes inflexible
to approximate the ground-truth community.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed COCLEP, a contrastive learning-
based method that improves the performance of community
search. We unleash the potential of using contrastive learning
in community search many-fold. These include redesigns of
augmentation views, positive/negative pairs, contrastive loss,
encoding of the augmentation view, as well as its combina-
tion with graph partitioning. To the best of our knowledge,
COCLEP is the first contrastive learning based model for
community search that significantly reduces the number of
required labeled data. Experiments on real-world graphs show
the state-of-the-art performance of our models.

There are several promising future directions. The first is
to consider handling unlabeled data. There is potential to
extend our methods to handle these datasets. For example,
one can use some existing unsupervised metrics to shortlist
some positive pairs, and then apply our method for a semi-
supervised learning. Another direction is to consider sampling
techniques to circumvent the efficiency issue. There is always
a tradeoff between sampling rate and result quality. Practically,
one may select a proper sampling rate based on the practical
need on the result quality.

ACKNOWLEDGMENT

This research is supported by the National Natural Sci-
ence Foundation of China (62032013, 61902004), Singapore
MOE AcRF Tier 2 funding (MOE-T2EP20122-0003), Tier-
1 seed funding (RS05/21) and NTU SUG-NAP (022029-
00001), ARC FT200100787, DP210101347, Singapore Insti-
tute of Technology Ignition Grant (R-IE2-A405-0001), Chi-
nese Scholarship Council, the Project of Beijing Municipal
Education Commission (KM202010009009).

REFERENCES

[1] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin,
“A survey of community search over big graphs,” The VLDB Journal,
vol. 29, no. 1, pp. 353–392, 2020.

[2] L. Chen, C. Liu, K. Liao, J. Li, and R. Zhou, “Contextual community
search over large social networks,” in ICDE, 2019, pp. 88–99.

[3] M. Sozio and A. Gionis, “The community-search problem and how to
plan a successful cocktail party,” in SIGKDD, 2010, pp. 939–948.

[4] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng, “Approximate
closest community search in networks,” Proc. VLDB Endow., vol. 9,
no. 4, pp. 276–287, 2015.

[5] J. Hu, X. Wu, R. Cheng, S. Luo, and Y. Fang, “Querying minimal steiner
maximum-connected subgraphs in large graphs,” in CIKM, 2016, pp.
1241–1250.

[6] E. Akbas and P. Zhao, “Truss-based community search: a truss-
equivalence based indexing approach,” Proc. VLDB Endow., vol. 10,
no. 11, pp. 1298–1309, 2017.

[7] K. Yao and L. Chang, “Efficient size-bounded community search over
large networks,” Proc. VLDB Endow., vol. 14, no. 8, pp. 1441–1453,
2021.

[8] J. Kim, S. Luo, G. Cong, and W. Yu, “DMCS : Density modularity
based community search,” in SIGMOD, 2022, pp. 889–903.

[9] B. Liu, F. Zhang, W. Zhang, X. Lin, and Y. Zhang, “Efficient community
search with size constraint,” in ICDE, 2021, pp. 97–108.

[10] L. Chang, X. Lin, L. Qin, J. X. Yu, and W. Zhang, “Index-based
optimal algorithms for computing steiner components with maximum
connectivity,” in SIGMOD, 2015, pp. 459–474.

[11] J. Gao, J. Chen, Z. Li, and J. Zhang, “ICS-GNN: lightweight interactive
community search via graph neural network,” Proc. VLDB Endow.,
vol. 14, no. 6, pp. 1006–1018, 2021.

[12] Y. Jiang, Y. Rong, H. Cheng, X. Huang, K. Zhao, and J. Huang,
“Query driven-graph neural networks for community search: From non-
attributed, attributed, to interactive attributed,” Proc. VLDB Endow.,
vol. 15, no. 6, pp. 1243–1255, 2022.

[13] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, and
J. Tang, “Gcc: Graph contrastive coding for graph neural network pre-
training,” in SIGKDD, 2020, pp. 1150–1160.

[14] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in Neural Information
Processing Systems, vol. 33, pp. 5812–5823, 2020.

[15] H. Xiong, J. Yan, and L. Pan, “Contrastive multi-view multiplex
network embedding with applications to robust network alignment,” in
SIGKDDg, 2021, pp. 1913–1923.

[16] J. Leskovec, “Stanford large network dataset collection,” http://snap.
stanford.edu/data.

[17] R. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search in
large networks,” Proc. VLDB Endow., vol. 8, no. 5, pp. 509–520, 2015.

[18] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu, “Effective community
search over large spatial graphs,” Proc. VLDB Endow., vol. 10, no. 6,
pp. 709–720, 2017.

[19] A. Al-Baghdadi and X. Lian, “Topic-based community search over
spatial-social networks,” Proc. VLDB Endow., vol. 13, no. 11, pp. 2104–
2117, 2020.

[20] J. Kim, T. Guo, K. Feng, G. Cong, A. Khan, and F. M. Choudhury,
“Densely connected user community and location cluster search in
location-based social networks,” in SIGMOD, 2020, pp. 2199–2209.

[21] J. Luo, X. Cao, X. Xie, Q. Qu, Z. Xu, and C. S. Jensen, “Efficient
attribute-constrained co-located community search,” in ICDE, 2020, pp.
1201–1212.

[22] F. Guo, Y. Yuan, G. Wang, X. Zhao, and H. Sun, “Multi-attributed
community search in road-social networks,” in ICDE, 2021, pp. 109–
120.

[23] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search
for large attributed graphs,” Proc. VLDB Endow., vol. 9, no. 12, pp.
1233–1244, 2016.

[24] X. Huang and L. V. S. Lakshmanan, “Attribute-driven community
search,” Proc. VLDB Endow., vol. 10, no. 9, pp. 949–960, 2017.

[25] Q. Liu, Y. Zhu, M. Zhao, X. Huang, J. Xu, and Y. Gao, “Vac: vertex-
centric attributed community search,” in ICDE, 2020, pp. 937–948.

[26] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao, “Effective and efficient
community search over large heterogeneous information networks,”
Proc. VLDB Endow., vol. 13, no. 6, pp. 854–867, 2020.

[27] X. Jian, Y. Wang, and L. Chen, “Effective and efficient relational com-
munity detection and search in large dynamic heterogeneous information
networks,” Proc. VLDB Endow., vol. 13, no. 10, pp. 1723–1736, 2020.

[28] K. Wang, W. Zhang, X. Lin, Y. Zhang, L. Qin, and Y. Zhang, “Efficient
and effective community search on large-scale bipartite graphs,” in
ICDE, 2021, pp. 85–96.

[29] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” in ICML,
vol. 119, 2020, pp. 1597–1607.

[30] A. Van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv e-prints, pp. arXiv–1807, 2018.

[31] Y. Meng, J. Huang, G. Wang, C. Zhang, H. Zhuang, L. Kaplan, and
J. Han, “Spherical text embedding,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[32] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models,” in Proceedings
of the thirteenth international conference on artificial intelligence and
statistics, 2010, pp. 297–304.

[33] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive
learning with adaptive augmentation,” in Proceedings of the Web Con-
ference 2021, 2021, pp. 2069–2080.

[34] B. Li, B. Jing, and H. Tong, “Graph communal contrastive learning,”
arXiv preprint arXiv:2110.14863, 2021.

[35] S. Wan, S. Pan, J. Yang, and C. Gong, “Contrastive and generative graph
convolutional networks for graph-based semi-supervised learning,” arXiv
preprint arXiv:2009.07111, 2020.

[36] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in Neural Information Processing Systems, vol. 33, pp.
18 661–18 673, 2020.

[37] T. Wang and P. Isola, “Understanding contrastive representation learning
through alignment and uniformity on the hypersphere,” in International
Conference on Machine Learning. PMLR, 2020, pp. 9929–9939.

[38] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[39] S. Bai, F. Zhang, and P. H. S. Torr, “Hypergraph convolution and
hypergraph attention,” Pattern Recognit., vol. 110, p. 107637, 2021.

[40] F. Wang and H. Liu, “Understanding the behaviour of contrastive loss,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 2495–2504.

[41] https://sites.google.com/view/cocleptechnicalreport/.
[42] G. Karypis and V. Kumar, “Multilevelk-way partitioning scheme for

irregular graphs,” Journal of Parallel and Distributed computing, vol. 48,
no. 1, pp. 96–129, 1998.

[43] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in International conference on ma-
chine learning, 2016, pp. 40–48.

[44] Y. Zhang, Y. Xiong, Y. Ye, T. Liu, W. Wang, Y. Zhu, and P. S. Yu, “Seal:
Learning heuristics for community detection with generative adversarial
networks,” in SIGKDD, 2020, pp. 1103–1113.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2015.

[46] S. Fang, K. Zhao, G. Li, and J. X. Yu, “Community search: Learn from
small data,” arXiv preprint arXiv:2201.00288, 2022.

[47] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” Journal of statistical mechanics:
Theory and experiment, vol. 2005, no. 09, p. P09008, 2005.

[48] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view represen-
tation learning on graphs,” in International Conference on Machine
Learning, 2020, pp. 4116–4126.

[49] S. Muff, F. Rao, and A. Caflisch, “Local modularity measure for network
clusterizations,” Physical Review E, vol. 72, no. 5, p. 056107, 2005.

